
Certifiably Robust Policies
for Uncertain Parametric Environments

Yannik Schnitzer , Alessandro Abate , and David Parker

University of Oxford, Oxford, UK
{yannik.schnitzer,alessandro.abate,david.parker}@cs.ox.ac.uk

Abstract. We present a data-driven approach for producing policies that
are provably robust across unknown stochastic environments. Existing
approaches can learn models of a single environment as an interval
Markov decision processes (IMDP) and produce a robust policy with
a probably approximately correct (PAC) guarantee on its performance.
However these are unable to reason about the impact of environmental
parameters underlying the uncertainty. We propose a framework based
on parametric Markov decision processes with unknown distributions
over parameters. We learn and analyse IMDPs for a set of unknown
sample environments induced by parameters. The key challenge is then
to produce meaningful performance guarantees that combine the two
layers of uncertainty: (1) multiple environments induced by parameters
with an unknown distribution; (2) unknown induced environments which
are approximated by IMDPs. We present a novel approach based on
scenario optimisation that yields a single PAC guarantee quantifying
the risk level for which a specified performance level can be assured in
unseen environments, plus a means to trade-off risk and performance.
We implement and evaluate our framework using multiple robust policy
generation methods on a range of benchmarks. We show that our approach
produces tight bounds on a policy’s performance with high confidence.

1 Introduction

Ensuring the safety and robustness of autonomous systems in safety-critical tasks,
such as unmanned aerial vehicles (UAVs), robotics or autonomous control, is
paramount. A standard model for sequential decision making in these settings
is a Markov decision process (MDP), which provides a stochastic model of the
environment. However, real-world dynamics are complex, not fully known, and
may evolve over time. Reasoning about epistemic uncertainty, which quantifies
the lack of knowledge about the environment, can help construct robust policies
that perform well across multiple possible stochastic environments.

Consider the UAV motion planning problem shown in Figure 1a, based on [7].
The goal is to navigate the drone safely to the target zone (green box) whilst
avoiding obstacles (red regions). The drone’s dynamics are influenced by weather
conditions, such as wind strength or direction, potentially perturbing the drone
from its intended route. These conditions can vary over time and may be difficult
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(a) UAV motion planning environment
with sample trajectories [7].

0
20

40
60

80

100 Wind
 St

ren
gth

 (u
nit

s)

0
50

100
150

200
250

300
350

Wind Angle (degrees)

0.6

0.7

0.8

0.9

1.0

Success Probability

(b) Probability of task completion J(π, θ)
for different parameter valuations θ.

Fig. 1: Example parametric environment with induced performance function.

to observe exactly. In low disturbance conditions (e.g., light wind), the drone
can safely take the shorter route to the target (black dashed line). However, the
drone should fly safely under all conditions, even if it flies overly cautiously in
some. Therefore, a robust policy might take a detour through a less cluttered
region of the environment (longer blue dashed line), ensuring a high probability
of task completion even under more severe disturbances.

Epistemic uncertainty about the environment can be captured using uncer-
tain MDPs, such as interval MDPs (IMDPs), which define a range of possible
values for the probability of each transition between states of the model [24,58].
Under assumptions of independence, techniques such as robust dynamic program-
ming [31,37] can then be used to efficiently generate robust policies for these
IMDPs, i.e., policies that are optimal under worst-case assumptions about the
true values of the transition probabilities. Furthermore, data-driven approaches,
for example based on sampled trajectories through the environment, can be used
to simultaneously learn both an IMDP and a robust policy for it [3,36,48,51],
along with a probably approximately correct (PAC) guarantee on its performance.

In this paper, we present a general framework for synthesising provably robust
policies in settings where environmental uncertainty is influenced by one or
more parameters, e.g., wind strength/direction in the UAV example above. We
model environments as uncertain parametric MDPs (upMDPs) [7], comprising a
parameter space Θ of which each parameter valuation θ ∈ Θ induces a standard
MDP. Furthermore, an (unknown) distribution P over Θ represents the likelihood
of each parameter valuation. Based on trajectories through multiple sampled
instances of the environment, our goal is to produce certifiably robust policies.
Instead of making worst-case assumptions across all possible parameter values,
which can be overly conservative, we adopt a risk-based approach, providing a
guaranteed level of performance for the policy with an associated risk level that
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Fig. 2: For a fixed policy π, J(π, θ) is a random variable over performance values
with measure P over valuations θ ∈ Θ (left). We sample performances to bound
the risk r(π, J̃), i.e., the probability for J to take a value less than J̃ (right).

quantifies the possibility of this level being violated. We also provide a tuning
mechanism to adapt the trade-off between performance and risk.

To quantify the performance of a policy π in an MDP induced by parameter
valuation θ ∈ Θ, we use an evaluation function J(π, θ). Typical examples include
the probability to satisfy a specification expressed in temporal logics such as
LTL [38] or PCTL [27] or an expected reward (see Section 2). For a fixed
policy, J becomes a function in the valuations θ, as depicted in Figure 1b
for the UAV example. When additionally considering the distribution P over
parameter valuations, J becomes a random variable with respect to P describing
the performance likelihood under policy π (see Figure 2a). Whereas the dashed
vertical lines in Figure 2a indicate the worst-case performance of each policy,
Figure 2b illustrates the risk measure r(π, J̃) that we use in this paper: the
probability with which performance falls below a specified threshold J̃ .

Deriving policies that are robust, i.e., which achieve high performance across
either many or all possible environments, is a challenging problem. When Θ
is finite, and assuming worst-case performance (i.e., ignoring P), the model is
referred to as a multi-environment MDP, for which finding an optimal robust
memoryless policy is NP-hard, even for just two fully known environments [41].
For general upMDPs, recent work [42] finds robust policies but assumes that P can
be sampled directly and that the resulting MDPs are fully known. In our setting,
transition probabilities are unknown and are inferred from trajectories. This is
comparable to the aforementioned work on PAC-learning of IMDPs [3,36,48,51],
but these methods assume a single, fixed (but unknown) MDP.

In our work, there are two layers of uncertainty, resulting from (1) unknown
parameter valuations inducing unknown MDPs, sampled from (2) the unknown
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parameter distribution. In this setting, various learning-based methods known
as robust meta reinforcement learning have been proposed [17,25,54]. Crucially,
though, none of the existing learning algorithms are able to provide theoretical
guarantees as to the performance of the generated policies in unseen environments;
this is a core contribution of our framework.

An overview of our approach is illustrated in Figure 3. We assume access to
multiple sampled environments M[θi], each of which is an MDP induced by a
parameter valuation θi from the unknown distribution P. These are not fully
known; instead we are able to access a set of sample trajectories from each one.
In our UAV example, this equates to taking the drone outside on a new day and
encountering a new set of environmental conditions (or a simulation of this).

Our framework divides the sample environments into two groups, a training set
and a verification set. The training set is used to learn a robust policy. For this we
build on existing IMDP-based policy learning methods and also consider robust
meta reinforcement learning techniques. The verification set is used to derive the
guarantees on the performance of the robust policy obtained from the training set.
For this, we apply PAC IMDP learning to each unknown MDP in the verification
set. Concretely, we use sample trajectories to infer IMDP overapproximations,
which contain the true, unknown MDPs with a user-specified confidence. From
those, we can derive lower bounds on the performance J of the learned policy in
each of the environments, which hold with the specified confidence.

To tackle the higher layer of uncertainty and infer a bound for the policy’s
robust performance over the entire unknown distribution P underlying the sample
MDPs, we develop a new approach based on scenario optimisation [13,14]. This
takes samples of the performance J and a user-specified performance bound J̃
and provides a PAC guarantee on the probability of the performance on a new
sample being less than J̃ , i.e., the risk. However, in our setup we do not obtain
samples of J directly, but derive lower bounds from the learned PAC IMDPs,
which only hold up to a certain confidence. Our key theoretical contribution,
presented in Section 3.3, is a generalisation of the scenario approach that can
handle samples whose values are only known to lie in a confidence interval.

Our theoretical results combine the two layers of uncertainty: (1) the finite
sampling of MDPs from the distribution P, (2) the fact that sampled MDPs
are unknown, so the performances of the learned policy are only inferable up
to a certain confidence. The result is a single PAC guarantee on the policy’s
performance which holds with a high, user-specified confidence.

Furthermore, our framework allows tuning of the trade-off between perfor-
mance guarantee and risk. By excluding the k worst-case sample environments,
users can discard unlikely outliers, resulting in a higher performance guarantee
at the cost of an increased risk bound, adjustable to the level the user considers
admissible. We implement our framework as an extension of the PRISM model
checker [34] and show that it can tightly quantify the performance and associated
risk of learned policies on a range of benchmarks.

In summary, our contributions are: (1) a novel framework and techniques for
producing certifiably robust policies in uncertain parametric MDPs for which
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Fig. 3: Overview of our framework to derive performance and risk guarantees for
policies learned on upMDPs. The setup includes two layers of uncertainty: we
sample and analyse unknown environments from an unknown distribution.

both the parameters and transition probability functions are unknown; (2) new
theoretical results which yield PAC guarantees on a policy’s robust performance
on unseen environments, where sample environments are unknown and can only
be estimated from trajectories; (3) an implementation and evaluation of the
framework on a range of benchmarks.

This paper is an extended version of [45], including full proofs of all results,
extended experiments and further technical details.

1.1 Related Work

Epistemic uncertainty in MDPs has received broad attention across many areas,
including formal methods, planning and reinforcement learning [6]. As mentioned
above, there are various ways to model this using uncertain MDPs [24,58].
There are also techniques such as robust dynamic programming to synthesise
robust policies for these models [31,37] and approaches to learn the models from
trajectory data [3,36,48,51]. In this work, however, we investigate parametric
uncertainty sets with unknown distributions over parameter valuations.

Uncertain parametric MDPs have emerged as a common model in meta rein-
forcement learning [17,22,23,25,26] and gained attention in formal methods [7,42].
On the one hand, meta reinforcement learning trains policies on multiple unknown
environments sampled from an upMDP, using policy gradient methods [53], in
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order to generalise to unseen environments. However, to our knowledge, none of
these algorithms provide theoretical generalisation guarantees, either on their
average [22,26] or their robust performance [17,25].

On the other hand, existing formal methods approaches to upMDPs do not
offer the generality of meta RL setups. The work in [7] uses scenario methods and
provides PAC guarantees, but for the existence of a policy that achieves a certain
performance, not robust policy synthesis; they also require full knowledge of
sampled parameter valuations and environments. In [42], concrete robust policies
are synthesised with a PAC guarantee for performance on unseen environments,
but this also relies on complete knowledge of all sampled valuations, reducing it to
a special case of our approach. In our work, we address the very general problem
of unknown sample environments; we target the scalability and generality of
meta RL, while providing formal guarantees that are independent of the model
size and previously unattainable for policy training methods like those in [42].

Also related is [18] which uses parametric MDPs in a Bayesian setting;
parameter valuations are unknown but the model’s transition functions are
known and assumed to be defined by polynomial expressions. Other recent work
in [16] combines, like us, the scenario approach and parametric MDPs, but for a
different setting that assumes uniform distributions over parameter spaces. We
also mention [8], which uses IMDPs to represent continuous-time Markov chains
based on observations with uncertain timing.

2 Preliminaries

We review the key formalisms used in our approach. Let ∆(S) = {µ : S → [0, 1] |∑
s µ(s) = 1} denote the set of all probability distributions over a finite set S.

Definition 1 (Parametric MDP). A parametric Markov decision process
(pMDP) is a tuple MΘ = (S, sI , A, PΘ), where S and A are finite state and action
spaces, sI ∈ ∆(S) is the initial state distribution, and PΘ : Θ× S ×A → ∆(S) is
the parametric transition probability function over the parameter space Θ. Fixing
a valuation θ ∈ Θ induces a standard MDP MΘ[θ], or M[θ] for short, with
transition kernel Pθ : S ×A → ∆(S) defined as Pθ(s, a, s

′) = PΘ(θ, s, a, s
′).

Parametric MDPs can be seen as an abstract model for a set of MDPs, i.e.,
they represent the instantiations induced by all possible valuations θ ∈ Θ. They
are closely related to the model class of uncertain MDPs [37,58], in which each
transition is associated with (potentially interdependent) sets of possible values.

Definition 2 (Uncertain Parametric MDP). An uncertain parametric Markov
decision process (upMDP) MP

Θ = (MΘ,P) is a pMDP MΘ with a (potentially
unknown) probability measure P over the parameter space Θ.

We assume that upMDPs are graph preserving, meaning that induced MDPs
share a common topology: ∀s, s′ ∈ S, a ∈ A : (∀θ ∈ supp(P) : Pθ(s, a, s

′) = 0) ∨
(∀θ ∈ supp(P) : Pθ(s, a, s

′) > 0). Although not strictly required, this assumption
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can be crucial for efficiently solving learned IMDP approximations of the induced
MDPs [36,58]. We describe in Section 3.4 how to lift this assumption by resorting
to techniques which only approximate the performance and not the model.

Policies resolve action choices in MDPs and upMDPs. They are mappings
π : (S ×A)∗ × S → ∆(A), assigning a distribution over actions based on (finite)
histories of states and actions. In this work, we focus on synthesising memoryless
policies π : S → ∆(A). While our theoretical results apply to arbitrary policy
classes, learning and evaluating more expressive policies, such as those with finite
memory, can be computationally expensive. We elaborate on this in Section 3.4.

Definition 3 (Evaluation Function). For an upMDP MP
Θ = (MΘ,P), an

evaluation function J : Π ×Θ → R maps a policy π and a parameter valuation θ
to a performance value. We also denote by J(π,M) the evaluation of policy π on
an arbitrary MDP M, such that J(π, θ) = J(π,M[θ]).

Typical evaluation functions include the reachability probability PrπM(♢T )
of eventually reaching a set of target states T ⊆ S, the reach-avoid probability
PrπM(¬C U T ) of reaching states in T while not entering a set of avoid states
C ⊆ S, the expected reward Eπ

M(♢T ) accumulated before reaching a set T , given
a reward structure, expected accumulated reward over finite or infinite time
horizons, or more sophisticated properties expressed in temporal logics such as
LTL [38] or PCTL [27]. Throughout this work’s technical presentation, we assume
that performance J is maximised. By changing the directions of optimisation
and inequalities, our results also directly apply to the dual minimisation case.

For a fixed policy π and upMDP MP
Θ, the evaluation function J only depends

on the valuations θ. Hence, J is a random variable with measure P (see Figure 2a).
The violation risk is the probability that policy π achieves a value less than a
stated performance guarantee J̃ on MP

Θ (see Figure 2b).

Definition 4 (Violation Risk). The violation risk of policy π for performance
guarantee J̃ ∈ R, denoted by r(π, J̃), is defined as:

r(π, J̃) = P
{
θ ∈ Θ : J(π, θ) < J̃

}
. (1)

There is an inherent trade-off between violation risk and performance guarantee:
a higher guarantee is associated with a higher risk, regardless of MP

Θ and J .
The framework we present in this paper is based on learning and solving

approximations of MDPs in the form of interval MDPs [24,58].

Definition 5 (Interval MDP). An interval Markov decision process (IMDP)
MI = (S, sI , A, P I) is an MDP with a probabilistic interval transition function
P I : S × A × S → I, where I = {[a, b] | 0 < a ≤ b ≤ 1} ∪ {[0, 0]} is the set
of all graph-preserving intervals. We say that IMDP MI includes MDP M,
denoted by M ∈ MI , if M and MI share the same state and action spaces, and
P (s, a, s′) ∈ P I(s, a, s′) for all s, s′ ∈ S, a ∈ A.
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For IMDPs, we typically adopt a robust view of a policy’s performance, i.e.,
the worst-case (minimum) value over any included MDP. We lift the evaluation
function J to an IMDP MI as follows:

J(π,MI) = min
M∈MI

J(π,M) =⇒ J(π,MI) ≤ J(π,M) for all M ∈ MI . (2)

For key classes of properties used here (e.g., reachability probabilities, rewards),
this value can be obtained via robust dynamic programming [31,37,58].

3 Learning Certifiably Robust Policies for upMDPs

This section presents our framework for computing performance and risk guar-
antees for learned policies in uncertain parametric MDPs. An overview of this
framework was illustrated in Figure 3 and introduced in Section 1. We assume a
fixed upMDP MP

Θ and access to a sample set D = {M[θi] | θi ∼ P} of unknown
MDPs. This sample set is split into disjoint training and verification sets. The
training set is used to compute a robust policy π, which is then evaluated on
the verification set to derive a performance guarantee J̃ and bound the violation
risk when the policy is deployed in an unseen environment sampled from P. The
overall goal is formally stated as follows.

Problem 1 Given a upMDP MP
Θ with unknown parameter distribution P, an

evaluation function J , and a confidence level η > 0, find a robust policy π, a
(tight) performance guarantee J̃ , and a (tight) risk bound ε > 0, such that:

Pr
{
r(π, J̃) ≤ ε

}
≥ 1− η.

There exist trivial solutions to Problem 1, such as selecting a very high risk
bound or a very low performance guarantee. We aim to identify a tight solution
that maximizes the performance guarantee with a precise, low risk bound.

The core part of our framework is the means to establish these performance
and risk bounds for policies evaluated in unknown environments. From each
unknown MDP in the verification set, we sample trajectories to learn an IMDP
approximation that includes the MDP with high confidence. Solving these IMDPs
yields probabilistic bounds on the policy’s performance in each environment.

Our main theoretical results build upon scenario optimisation [13,14], the
principal challenge being to incorporate the additional layer of uncertainty
introduced by only being able to estimate the policy’s performance in each
unknown sampled environment. The result is a single PAC guarantee on the
policy’s performance in unseen environments, stated in Problem 1 above.

The process of establishing these guarantees is agnostic to the manner in
which policies are produced. We consider two approaches, first taking a novel
combination of existing methods for IMDPs and upMDPs [42,51], and secondly
adopting a gradient-based technique from robust meta reinforcement learning [25].
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The remainder of the section is structured as follows. Since PAC learning
of IMDPs is used in multiple places, we discuss this first, in Section 3.1. Sec-
tion 3.2 covers robust policy learning, Section 3.3 presents our main theoretical
contributions and Section 3.4 describes several optimisations and extensions.

3.1 PAC IMDP Learning of Unknown MDPs

We follow established approaches for PAC learning of IMDP approximations
introduced in [3,36,48,51]. Consider an unknown MDP M[θi]. We assume access
to trajectories from M[θi], consisting of sequences of triples (s, a, s′) representing
states, chosen actions and successor states. Leveraging the Markov property of
MDPs, we treat each triple as an independent Bernoulli experiment to estimate
the transition probability to state s′ from s when choosing action a. We denote
the number of times action a was chosen in state s across all sample trajectories as
#(s, a), and the number of times this choice led to s′ as #(s, a, s′). The resulting
point estimate for the transition probability is thus given by:

P̃ (s, a, s′) =
#(s, a, s′)

#(s, a)
, (3)

for #(s, a) > 0. We construct an IMDP by transforming the point estimates into
PAC confidence intervals [12]. Traditionally, this is achieved with Hoeffding’s
inequality [30,48]. Recent work has demonstrated that significantly tighter model
approximations can be obtained by employing inequalities tailored to the binomial
distribution, such as the Wilson score interval with continuity correction [36,59].

Let 1− γ with γ > 0 be the desired confidence level for M[θi] to be included
in the IMDP, which we denote Mγ [θi]. This confidence is distributed over all
nu unknown transitions as γP = γ/nu. Let H = #(s, a) and p̃ = P̃ (s, a, s′). For
each unknown transition, the transition probability interval is given by:

P γ(s, a, s′) = [max(µ, p
wcc

),min(pwcc, 1)], (4)

with:

p
wcc

=

(
2Hp̃+ z2 − z

√
z2 − 1

H
+ 4Hp̃(1− p̃) + 4p̃− 2− 1

)
/ (2(H+z2)), (5)

pwcc =

(
2Hp̃+ z2 + z

√
z2 − 1

H
+ 4Hp̃(1− p̃)− 4p̃+ 2 + 1

)
/ (2(H+z2)), (6)

where z is the 1 − γP

2 quantile of the standard normal distribution [36] and
µ > 0 is an arbitrarily small quantity to preserve the known graph structure.
For unvisited state action pairs with #(s, a) = 0, we set P γ(s, a, s′) = [µ, 1], for
all s′ in the known support. P γ(s, a, s′) contains the true transition probability
P (s, a, s′) with a confidence of at least 1− γP . By applying a union bound over
the unknown transitions, we obtain the following overall guarantee:

Lemma 1 ([36]). The true, unknown MDP M[θi] is contained in its IMDP
overapproximation Mγ [θi] with probability at least 1− γ. ⊓⊔
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The confidence in the approximation of each environment is independent
of the number or length of the trajectories analysed. However, more or longer
trajectories generally lead to higher state-action counts, resulting in tighter
intervals. In Section 4, we examine how the number of trajectories analysed
influences the tightness of our performance guarantee and the associated risk.

3.2 Robust Policy Learning

We consider two distinct approaches to robust policy learning: robust IMDP policy
learning and robust meta reinforcement learning. For the former, we propose a
combination of techniques for robust policy synthesis for upMDPs with access to
fully known sample environments [42] and IMDP learning for single unknown
environments [51]. For the latter, we adopt a class of algorithms that optimise a
policy’s robust performance using policy gradient-methods [17,25].

Robust IMDP Policy Learning. Similarly to PAC IMDP learning in Sec-
tion 3.1, we use sample trajectories to compute an IMDP overapproximation [51]
for each unknown MDP in the training set. Then, like in [42], we combine models
across the training set to perform policy synthesis. To obtain a policy that is
robust across all samples, the learned IMDPs are combined by merging the
transition intervals of each IMDP as [a, b] ⊔ [c, d] = [min(a, c),max(b, d)]. The
resulting IMDP over-approximates all training MDPs, and the corresponding
optimal deterministic policy considers the worst-case probability for each transi-
tion [58]. As the IMDPs for the training set are only used for policy synthesis
and not for formal risk or performance analysis, we are not restricted to PAC
IMDP learning. We can leverage a rich pool of interval learning algorithms, which,
while lacking formal inclusion guarantees, provide empirically tighter intervals
from fewer trajectories. A detailed overview and comparison of interval learning
methods and their model approximation capabilities is conducted in [51]. We
evaluate the best-performing approaches in our benchmarks in Section 4.

Robust Meta Reinforcement Learning. IMDP policies can be overly con-
servative, as they consider the worst-case scenario for each transition indepen-
dently [42]. Additionally, IMDP learning produces memoryless deterministic
policies. While sufficient for optimality in IMDPs, there exist upMDPs where an
optimal robust policy requires randomization or memory [41].

Robust meta-reinforcement learning (RoML) extends classical reinforcement
learning from a single MDP to upMDPs [17,25]. RoML employs policy gradient
methods [53] to optimize a policy’s performance across sampled training envi-
ronments, estimating performance from sampled trajectories in each unknown
environment. Unlike standard meta-RL, which maximises expected rewards across
environments [10] and often yields strong average but poor worst-case perfor-
mance, RoML prioritises robustness. It trains a policy using RL techniques to
optimise the performance in the worst-case environment (via the max-min objec-
tive) [17] or in the α-quantile of worst-case environments (via a risk-aware CVaR
objective) [25]. RoML differs from robust RL [20,57], which focuses on a single
uncertain MDP, seeking a policy that is robust to its internal uncertainty. In
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Fig. 4: Example risk bounds obtained from Theorem 1 (left) and Theorem 2 (right)
for IMDP confidence γ = 10−4. For Theorem 2, 5% of samples are discarded.

contrast, RoML addresses multiple MDPs sampled from an unknown distribution,
aiming for a policy that generalizes to the full distribution by achieving a strong
robust performance across the sampled MDPs. This aligns well with our setup,
and we refer the reader to [17,25] for further details on this approach.

3.3 Certifying Policy Performance and Risk in upMDPs

We now present our main theoretical contributions for quantifying the performance
and violation risk of a policy π deployed in unseen environments of an upMDP.
Specifically, we provide two results that derive PAC guarantees from lower bounds
on π’s performance, which we obtain by building and analysing PAC IMDPs (see
Section 3.1) for the sampled environments that make up the verification set.

The first result extends the scenario approach [13,14] to incorporate additional
uncertainty, as the lower bounds hold only with a certain confidence. This provides
a PAC guarantee on the policy’s performance, reasoning over the unknown
distribution of true environments P, based solely on estimations from sampled
unknown environments attained by IMDP learning. The second result introduces
flexibility in balancing the risk-performance trade-off. By extending a second
result of the scenario approach, we allow the performance bound to be tuned by
excluding worst-case outlier samples from the analysis, potentially leading to a
higher performance guarantee at the cost of an increased risk bound.

Assume that the verification set comprises N sampled MDPs, from which
we have learnt the PAC IMDPs {Mγ [θi]}1≤i≤N . This establishes probabilistic
lower bounds on the policy π’s performance in the underlying unknown MDPs.
From Equation (2), we have that M[θi] ∈ Mγ [θi] ⇒ J(π,Mγ [θi]) ≤ J(π,M[θi]),
where J(π,Mγ [θi]) can be obtained by standard solution methods for IMDPs,
such as robust dynamic programming [31,37]. By Lemma 1, it follows that:

P{J(π,Mγ [θi]) ≤ J(π,M[θi])} ≥ 1− γ. (7)

To bound the violation risk, we formulate the problem as a convex optimisation
problem with randomised constraints—a scenario program [15]. We extend the
generalisation theory of the scenario approach [13] to account for the uncertainty
in the lower performance bounds (see Equation (7)). The detailed formulation
and derivation of our generalisation can be found in Appendix A.
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Theorem 1. Given N i.i.d. sample MDPs M[θi] and IMDPs Mγ [θi], such that
P{M[θi] ∈ Mγ [θi]} ≥ 1− γ. For any policy π and confidence level 1− η, with
η > 0, it holds that:

PN
{
r(π, J̃γ) ≤ ε(N, γ, η)

}
≥ 1− η, (8)

where J̃γ = mini J(π,Mγ [θi]), and ε(N, γ, η) is the solution to the following, for
any K ≤ N :

N∑
i=K

(
N

i

)
(1− γ)iγN−i − (1− η) =

N−K∑
i=0

(
N

i

)
εi(1− ε)N−i. (9)

Proof sketch. The standard scenario approach in one dimension considers a set
of i.i.d. performance samples J1, . . . , JN and provides a bound on the probability
that the next sampled performance is lower than the minimum. In our case, we
only have lower bounds on the actual performances, with P{Jγ

i ≤ Ji} ≥ 1− γ.
Assuming all lower bounds are valid with probability (1 − γ)N , we obtain an
under-approximation of the true solution to the scenario program, and the union
bound combines the confidences of the scenario approach and the validity of the
lower bounds. However, this confidence becomes very small for large sample sizes
N , even when 1− γ is close to 1. Conversely, with small sample sizes, the overall
confidence remains low due to the weaker scenario confidence. To mitigate this,
we require only K of the N lower bounds to be valid, which holds with high
probability for small values of γ, even when K is close to N . As a result, we
can exclude a small number N −K of samples, assuming them to be violated
under the scenario approach, thereby soundly over-approximating the risk. This
only marginally increases the stated risk bound while significantly reducing the
confidence overhead. Since we cannot specify which bounds are valid, we use the
minimum over all lower performance bounds as an under-approximation of the
solution to all scenario sub-programs with N−K discarded constraints, providing
a sound performance guarantee. The complete proof, including detailed bounds
and derived inequalities, can be found in Appendix A.

Theorem 1 bounds the risk for a policy to achieve a performance less than the
minimum performance on any of the IMDPs. This bound only depends on values
we can observe from the learned IMDP approximations. The theorem includes a
tuning parameter K ≤ N . The bound is valid for any value of K, and to obtain
the tightest bound, we enumerate possible values and solve the resulting equation.
For a fixed K, the left-hand side of Equation (9) is constant, and the right-hand
side is the cumulative distribution function of a beta distribution with K +1 and
N −K degrees of freedom [15], which is easy to solve numerically for its unique
solution in the interval [0, 1] using bisection [7,43]. To the best of our knowledge,
this is the first result to establish PAC guarantees on policy performance in
unseen environments of upMDPs, in a setting where sample environments are
unknown and can only be estimated from trajectories. Figure 4 illustrates the
resulting risk bounds for example values. We assess the quality and tightness of
our performance and risk bounds in the benchmarks presented in Section 4.
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We extend Theorem 1 to allow tuning of the risk-performance trade-off by
discarding samples [14]. Instead of bounding the risk for the policy to achieve a
performance less than the minimum, we state a bound for the kth order statistic
of the verification set. Users can choose k for a permissible risk level and a
potentially higher performance guarantee, avoiding constraints from samples in
the unlikely tail of the distribution.

Definition 6 (Order Statistic). For a set of N samples J1, . . . , JN ∈ R and
0 ≤ k < N , the kth order statistic J̃(k) is the kth smallest element when arranging
all samples from smallest to largest.

Theorem 2. Given N i.i.d. sample MDPs M[θi] and IMDPs Mγ [θi], such that
P{M[θi] ∈ Mγ [θi]} ≥ 1− γ, for any policy π, confidence level 1− η with η > 0,
and number k of discarded samples, it holds that

PN
{
r(π, J̃γ

(k)) ≤ ε(k)(N, γ, η)
}
≥ 1− η, (10)

where J̃γ
(k) is the kth order statistic of the performances J(π,Mγ [θi]), and

ε(k)(N, γ, η) is the solution to the following, for any K ≤ N − k:

N−k∑
i=K

(
N − k

i

)
(1− γ)iγN−k−i − (1− η) =

N−K∑
i=0

(
N

i

)
εi(1− ε)N−i. (11)

⊓⊔
When k = 0 and no samples are discarded, Theorem 2 specialises to Theo-

rem 1. The proof is an extension incorporating the additional uncertainty of the
lower bounds obtained from the PAC IMDPs into the sampling-and-discarding
theorem from scenario optimisation [14]. We detail the derivation of the bound
in Appendix A and analyse its tightness in the experiments in Section 4.

3.4 Optimisations and Extensions

Finally in this section, we present some optimisations and extensions for our
approach. First we show that, if there is additional knowledge as to the parametric
structure of the upMDP, we can leverage this to obtain tighter approximations
of the sample environments. Conversely, we describe how to seamlessly apply
our framework and results to setups with less model knowledge, i.e., where
not even the graph structure nor the (possibly infinite) state space is known.
Furthermore, we outline how our results apply to more general setups where
parameters influence not only transition probabilities, but also the evaluation
functions, i.e., the specifications or tasks may vary across samples, aligning it
with the setup commonly considered in meta reinforcement learning [17,25].

Model-based Optimisations. IMDP learning as described in Section 3.1
requires no knowledge of an MDP beyond its graph structure. However, additional
information about the environment can yield tighter approximations with fewer
samples. In cases where certain parameters, like temperature or air pressure, and
their effect on some transition probabilities are known exactly, those transitions
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can be treated as singleton intervals. This reduces the need for approximation
and decreases the number of learned transitions nu.

Additionally, we can apply parameter tying [39,40] to parameters appearing
across different transitions. For instance, consider two transitions sharing the
same parameterisation, PΘ(s, a, s

′) = PΘ(t, b, t
′). We can combine the counts

from both transitions since they represent the same Bernoulli experiment. Let
sim(s, a, s′) = {(t, b, t′) | PΘ(s, a, s

′) = PΘ(t, b, t
′)} denote the set of transitions

with identical parametrisation. By plugging the combined counts, #T (s, a, s′) =∑
(t,b,t′)∈sim(s,a,s′) #(t, b, t′) and HT (s, a, s′) =

∑
(t,b,t′)∈sim(s,a,s′) #(t, b) into

Equations (3) and (4), we can obtain a tighter interval for both transitions.
Our experiments in Section 4 use model-based optimisations and the full

evaluation in Appendix C compares the results with and without optimisations.

Statistical Model Checking. To approximate the performance of a learned
policy in unknown sample environments, our framework is not limited to PAC
IMDP learning. Various forms of statistical model checking (SMC) [1,29,35] can
be applied, as long as they provide a lower bound Jγ

i on a policy’s performance in a
single environment induced by parameters θi, with a formally quantified confidence
Pr {J(π, θi) ≥ Jγ

i } ≥ 1− γ. SMC techniques that require less information than
PAC IMDP learning include those that rely on the minimum probability pmin

potentially present in the model to infer the MDP’s end-components with the
desired confidence [3,19,36], or those that operate in a fully black-box setting
with no model knowledge, approximating only the performance value. However,
the latter techniques are typically restricted to finite-horizon properties [46,61].

Uncertain Specifications or Tasks. The meta reinforcement learning litera-
ture usually considers upMDPs where both transition probabilities and reward
structure depend on parameters [22,25,26]. Our framework encompasses this
problem class, and our results carry across directly. Parameterised rewards or
specifications can be integrated into the evaluation function J , allowing parame-
ters to affect both transitions and rewards. While the formal methods community
has explored uncertain rewards and specifications to a lesser extent [5,44,47], we
believe this is a promising direction for future work, particularly in extending
PAC guarantees to uncertain specifications and objectives.

Non-memoryless Policies. In this work, we focus on synthesis of memoryless
policies, which are sufficient for optimal performance under many common per-
formance functions, such as reachability and reach-avoid specifications, in both
single MDPs and IMDPs. However, for multiple environments or more complex
specifications, such as general linear-time (LTL) properties, an optimal robust
policy may require memory [37,41,60]. Our theoretical results in Theorems 1
and 2 apply to arbitrary policy classes, provided that policy performance can be
evaluated on the learned IMDP approximations to obtain sample performance
values. But solution of IMDPs in these cases presents challenges. For example,
the standard automaton product constructions can be used to find finite-memory
policies that optimise LTL specifications [60] but, in addition to increased compu-
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Table 1: Salient characteristics of the evaluated benchmarks.
Benchmark Evaluation J Opt. #Parameters #States #Transitions

UAV [7] Pr(¬C U T ) max 15 4096 86912
Aircraft Collision [33] Pr(¬C U T ) max 2 303 3468

Firewire [28] Pr(♢T ) min 1 80980 112990
Semi-Auton. Vehicle [32] Pr(♢T ) max 2 411 1503

Betting Game [9] E(♢T ) max 1 480 2730
Chain [2] E(♢T ) min 1 7 42

tational cost, the addition of memory means moving from a static to a dynamic
uncertainty model [50,60], yielding overly conservative performance bounds.

4 Experimental Evaluation

We implemented our framework as an extension of the PRISM model checker [34],
which provides trajectory generation and (robust) value iteration for MDPs and
IMDPs1. We have evaluated our approach on a range of established benchmark
environments used in similar work: an Aircraft Collision Avoidance [33], a Chain
Problem [2], a Betting Game [9], a Semi-Autonomous Vehicle [32,49], the Firewire
protocol [28], and the previously mentioned UAV [7]. Table 1 shows the salient
features of the environments. We provide detailed descriptions of each benchmark,
including the parameters and their distributions P in Appendix B.

Setup. Since our approach is the first to provide policy performance guarantees
under two layers of uncertainty, i.e., unknown sample environments from an
unknown distribution, our experiments focus on assessing the quality of these
guarantees. We study: (1) the tightness of the performance level J̃ , assessing how
closely our stated robust performance guarantee derived from the learned PAC
IMDPs aligns with the actual robust performance on the true underlying sample
MDPs that are hidden from the algorithm; (2) the quality of the risk bound ε
derived from Theorems 1 and 2 with respect to the true violation risk r(π, J̃).

Our approach includes two sampling dimensions corresponding to the two
layers of uncertainty: (1) the number of unknown MDPs induced by parameter
valuations sampled from the distribution P; (2) the number of sample trajectories
generated in each unknown MDP. For the first dimension we consider a total of
600 sample MDPs, which we divide equally into training and verification sets.
For the Firewire benchmark, we consider 150 verification samples. The second
dimension is evaluated for up to 106 trajectories in each sampled environment.

For policy learning, we consider the two methods described in Section 3.2:
robust IMDP policy learning and robust meta reinforcement learning with the
max-min objective, implemented using the Gymnasium Python framework [55].
This illustrates the applicability of our approach to distinct state-of-the-art policy
learning algorithms. We focus here on guarantees, rather than comparing policy
learning methods, but we include statistics for both in Appendix C and refer the
reader to, e.g., [17,25,51] for an in-depth comparison of methods.
1 The implementation is available at: https://doi.org/10.5281/zenodo.14717176.

https://doi.org/10.5281/zenodo.14717176
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Table 2: Resulting performances, guarantees and risk bounds.

Benchmark Performance
J

Guarantee
J̃

Risk Bound
ε

Empirical
Risk r(π, J̃)

Risk Bound
ε(5)/Empirical

Risk

Risk Bound
ε(10)/Empirical

Risk

Runtime
per 104

trajectories

UAV 0.7110 0.7100 0.027 0.003 0.052 / 0.023 0.075 / 0.057 1.51s
Aircraft Collision 0.5949 0.5900 0.027 0.004 0.052 / 0.017 0.075 / 0.046 0.35s

Firewire 0.1946 0.1967 0.055 0.004 0.103 / 0.039 0.146 / 0.081 14.9s
Semi-Auton. Vehicle 0.7854 0.7767 0.027 0.004 0.052 / 0.018 0.075 / 0.033 0.50s

Betting Game 30.78 30.65 0.027 0.005 0.052 / 0.016 0.075 / 0.026 1.12s
Chain 127.2 128.0 0.027 0.002 0.052 / 0.032 0.075 / 0.054 0.32s

For producing guarantees, we set the inclusion confidence level for the PAC
IMDPs learned on the verification set to γ = 10−4 and the overall confidence
when applying Theorems 1 and 2 to η = 10−2. Optimisations from Section 3.4
are applied (see Appendix C for results of their impact). All experiments were
conducted on a 3.2 GHz Apple M1 Pro CPU with 10 cores and 16 GB of memory.

Results. Table 2 summarises the resulting performances and guarantees for
the best-performing policy. All results are obtained after processing the full set
of trajectories. We first give the true robust performance J , i.e., the policy’s
performance on the worst-case true MDP, which is hidden from the algorithm. We
then report the key outputs of our approach: the robust performance guarantee J̃ ,
representing the worst-case performance on the learned PAC IMDPs, and the
risk bound ε for the performance guarantee J̃ , obtained using Theorem 1. We
also show an empirical estimate of the true violation risk r(π, J̃), computed over
1000 fresh sample MDPs. To evaluate the bounds derived via Theorem 2, we
include the risk bounds ε(k) for discarding k = 5 and k = 10 worst-case samples,
alongside estimates of the corresponding true violation risks.

For example, in the UAV case study, the table shows that the learned policy
achieves at least J = 0.711 probability of reaching the goal without crashing into
an obstacle on any sampled true MDP hidden from the algorithm. The learned
IMDP approximations certify a minimum performance of J̃ = 0.71, with the
probability of performing worse on a fresh sample MDP bounded by ε = 0.027.
On 1000 fresh samples, the policy actually performed worse in only 0.3% of cases.

Figure 5 shows the learning process and the derived performance guarantee for
the Betting Game benchmark. We plot the true robust performance J (solid line),
and the robust performance guarantee J̃ (dashed line) against the number of
trajectories processed for each unknown MDP. We depict the progress for robust
IMDP policy learning (purple) and robust meta reinforcement learning (yellow).
The dotted red line corresponds to the existential guarantee [7], i.e., the minimum
performance on any MDP from the verification set, when applying the individual
optimal policies, which constitutes a natural upper bound on robust policy
performance. Figure 6 illustrates the risk-tuning with performance guarantees
obtained via Theorem 2. We depict the performances on the PAC IMDPs learned
for the verification set (pink dots) and the performance guarantees J̃(k) when
discarding the k = 0, 5, and 10 worst-case samples (dashed lines), corresponding
to the risk bounds ε(k) in Table 2. The full results for all policy learning techniques
and benchmarks can be found in Appendix C.
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10 worst-case samples (betting game).

Discussion. The results show that our framework generates tight bounds on the
performance and risk of learned policies in upMDPs. Our approach effectively
addresses and integrates the two layers of uncertainty: (1) an unknown envi-
ronment distribution and (2) unknown sample environments. Our results yield
high-quality risk bounds for the performance of policies in unseen environments.
They enable tuning the risk-performance trade-off, and despite incorporating two
layers of uncertainty, provide useful bounds with high user-specified confidence,
constituting the first PAC guarantee for this general setup. While policy learning
and solving PAC IMDPs scales with the model size and the number of sample
MDPs, the computation of the risk bounds via Theorems 1 and 2 depends solely
on the number of verification samples N and is independent of the model size.
Regarding scalability, we briefly note that the range of model sizes we handle
(see Table 1) includes the largest instances handled by comparable methods that
perform PAC IMDP learning from trajectories [3,51,36].

5 Conclusion

We have presented a novel approach for producing certifiably robust policies
for MDPs with epistemic uncertainty, where transition probabilities depend on
parameters with unknown distributions. We have demonstrated that our approach
yields tight bounds on a policy’s performance in unseen environments from the
same distribution. Future work includes extending certifiably robust policies to
settings where the specification or task is also uncertain and parameter-dependent.
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A Derivations and Proofs

We detail the proofs and derivations of our main theoretical contributions. We
state our lemmas and theorems for the case of maximising the evaluation functions,
which has implications for the linear programs and inequalities used. However
all our results apply to the minimising case by swapping the inequalities and
directions of optimisation.

First, we present a range of results for incorporating additional uncertainty
into the scenario approach [13,14]. We then show how to formulate our problem as
a randomised convex program—the scenario program—and apply the generalised
scenario theorems to derive our main results.

A.1 The Scenario Approach with Uncertain Constraints

We first present the basic setup for the scenario approach introduced in [13]. The
ingredients for the scenario approach are:

1. A cost function cTx,
2. An admissible region C ⊆ Rd,
3. A family of convex constraints indexed by an uncertain parameter {Cθ ⊆

Rd | θ ∈ Θ},
4. A probability measure P over Θ.

Given samples (θ1, . . . , θN ) of independent random parameter valuations
drawn from (Θ,P), a scenario program is a linear program over the corresponding
convex constraints:

max
x∈C

cTx

subject to x ∈
⋂

i=1,...,N

Cθi ,
(12)

which we specialise to cTx = x. Let x∗ be the solution to the scenario program
in Equation (12). The scenario approach provides the generalisation theory to
bound the violation probability defined as:

V (x) = P {θ ∈ Θ : x ̸∈ Cθ} . (13)

The violation probability is the probability that the solution to the scenario
program is violating an unseen constraint sampled from Θ, which corresponds to
the policy violation risk r(π, θ). From now on, we assume the sampled constraints
Cθ1 , . . . , CθN (abbr. : Cθ1:N ) are unknown. Instead, we are given a set of known
convex constraints Ĉθ1:N , for which Ĉθi ⊆ Cθi ,∀1 ≤ i ≤ N . Furthermore, we
assume that all constraints, known or unknown are one-dimensional intervals
of the form Cθi = [a, bθi ], for some constant a ≤ bθi ,∀1 ≤ i ≤ N . Note that a
can be −∞. All our results hold for the case of constraints as one-dimensional
intervals, but do not necessarily generalise to higher dimensional problems. In
the minimisation case, the intervals would be of the form [aθi , b].
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We first show that the violation probability of the solution obtained for
the more conservative constraints Ĉθi cannot be higher than for the unknown
constraints Cθi . This means that a higher solution is associated with a higher
risk, which reflects the risk-performance trade-off.

Lemma 2. Let a ≤ x ≤ y ∈ R, it holds that V (x) ≤ V (y).

Proof. Given a new constraint Cθ = [a, bθ], we have that

x ̸∈ Cθ ⇒ x > bθ ⇒ y > bθ ⇒ y ̸∈ Cθ. (14)

It follows that

V (x) = P {θ ∈ Θ : x ̸∈ Cθ}
(14)
≤ P {θ ∈ Θ : y ̸∈ Cθ} = V (y). (15)

Next, we prove that soundly under-approximating the constraints also leads
to a sound risk reduction. This will later allow us to bound the true risk of
unknown constraints from known under-approximations.

Lemma 3. Let x∗ ∈ R and x̂∗ ∈ R be the solutions to the scenario program in
Equation (12) with constraints Cθ1:N and Ĉθ1:N with Ĉθi ⊆ Cθi ,∀1 ≤ i ≤ N . It
holds that

V (x̂∗) ≤ V (x∗). (16)

Proof. We show that the claim holds for our case of convex constraints of the
form Cθi = [a, bθi ]. It is easy to see that the optimal solutions to the scenario
program in Equation (12), with finitely many interval constraints are

x∗ = min
i

bθi and x̂∗ = min
i

b̂θi . (17)

Now Ĉθi ⊆ Cθi is equivalent to [a, b̂θi ] ⊆ [a, bθi ], which implies that b̂θi ≤ bθi and
therefore x̂∗ ≤ x∗. The claim follows by Lemma 2.

Furthermore, we show that a solution obtained for constraints Cθ1:N cannot have
a higher violation probability than the solution for any of its subsets.

Lemma 4. Let x∗ ∈ R and x∗
Q ∈ R be the solutions to the scenario program in

Euqation (12) with constraints Cθ1:N and Cθr1:rK
, for some R = {r1, . . . , rK} ⊆

[N ] = I. It holds that
V (x∗) ≤ V (x∗

R). (18)

Proof. Given that all constraints are of the form [a, bθi ], it is easy to see that the
optimal solutions to the scenario program in Equation (12), with finitely many
interval constraints are

x∗ = min
i∈I

bθi and x∗
R = min

r∈R
bθr . (19)

Now since R ⊆ I it follows that x∗ ≤ x∗
R. The claim follows by Lemma 2.
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As the last ingredient for the first main theorem, we show that the violation
risk for the solution obtained when removing k arbitrary constraints cannot be
higher than the solution obtained when removing the k worst-case constraints.

Lemma 5. Let x∗
R ∈ R be the solution to the scenario program in Equation (12)

with constraints Cθr1:rK
, for some R = {r1, . . . , rK} ⊆ [N ] = I. Let x∗

N,k be
the solution for constraints Cθ1:N that violates exactly k = N − K of the N
constraints. It holds that

V (x∗
R) ≤ V (x∗

N,k). (20)

Proof. Given that all constraints are of the form [a, bθi ], it is easy to see that the
optimal solution to the scenario program in Equation (12), with finitely many
interval constraints Cθr1:rK

is

x∗
R = min

r∈R
bθr . (21)

Further, the maximum solution that violates exactly k of the N constraints Cθ1:N

is the (k + 1)-th smallest bθ. Since |R| = K and k = N − K, it follows that
x∗
R ≤ x∗

N,k. The claim follows by Lemma 2.

We relax the requirement of all known constraints being sound under-approximations
of the sampled, unknown constraints Ĉθi ⊆ Cθi ,∀1 ≤ i ≤ N , to an uncertain
setting, where it holds that

P
{
Ĉθi ⊆ Cθi

}
≥ 1− γ, (22)

for some γ > 0 and any 1 ≤ i ≤ N . This represents the approximation of
the performances up to a certain confidence via statistical model checking.
The probability that there exists a subset of constraints with indices R =
{r1, . . . , rK} ⊆ [N ], which all contain their under-approximations Ĉθr ⊆ Cθr ,∀r ∈
R is

PN
{
∃R ⊆ [N ] : |R| = K and ∀r ∈ R : Ĉθr ⊆ Cθr

}
≥

N∑
i=K

(
N

i

)
(1− γ)iγN−i

(23)

(3)⇒PN {∃R ⊆ [N ] : |R| = K and V (x̂∗
R) ≤ V (x∗

R)} ≥
N∑

i=K

(
N

i

)
(1− γ)iγN−i

(24)

(4)⇒PN {∃R ⊆ [N ] : |R| = K and V (x̂∗) ≤ V (x∗
R)} ≥

N∑
i=K

(
N

i

)
(1− γ)iγN−i (25)

(5)⇒PN
{
V (x̂∗) ≤ V (x∗

N,k)
}
≥

N∑
i=K

(
N

i

)
(1− γ)iγN−i, (26)

where k = N−K, x̂∗ denotes the solution to the scenario program in Equation (12)
for all N constraints (under-approximations), x∗

N,k is the solution when removing
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the k worst-case constraints, and x∗
R and x̂∗

R are the solutions for the subset of
constraints with indices R. Note that these results hold for any K ≤ N . In the
following, we abbreviate Equation (26) as

PN
{
V (x̂∗) ≤ V (x∗

N,k)
}
≥ 1− p. (27)

Given that x∗
N,k is the solution to the scenario program in Equation (12) with

constraints Cθ1:N , violating exactly k of the N constraints, we apply Theorem
2.1 of [14], which states:

PN
{
V (x∗

N,k) ≤ ε(N, k, β)
}
≥ 1− β, (28)

where ε(N, k, β) is a bound on the violation probability given the number of
discarded constraints k and confidence level 1 − β with β > 0, given as the
solution to

β =

k∑
i=0

(
N

i

)
εi(1− ε)N−i. (29)

To bound the violation probability of the observable solution x̂∗ with respect
to the distribution over unknown constraints P, we use:

V (x̂∗) ≤ V (x∗
N,k) ∧ V (x∗

N,k) ≤ ε ⇒ V (x̂∗) ≤ ε. (30)

Thus,
PN {V (x̂∗) ≤ ε} ≥ PN

{
V (x̂∗) ≤ V (x∗

N,k) ∧ V (x∗
N,k) ≤ ε

}
. (31)

Using the union bound, this transforms into:

PN {V (x̂∗) ≤ ε} ≥ 1− PN
{
V (x̂∗) > V (x∗

N,k)
}
− PN

{
V (x∗

N,k) > ε
}
. (32)

From Equations (27) and (28), we conclude:

PN {V (x̂∗) ≤ ε(N, k, β)} ≥ 1− (β + p). (33)

We combined the uncertainties stemming from finite sample generalisation using
the scenario approach, and the fact that constraints are only known as under-
approximations up to a certain confidence. Equation (33) provides a bound on the
violation probability for the solution obtained from known under-approximations
J(x̂∗), generalising to the unknown distribution over true constraints from P.

Theorem 3. Given N i.i.d. samples θ1:N ∼ P with corresponding unknown
constraints Cθ1:N and observable constraints Ĉθ1:N , all of the form [a, bθ], and
P{Ĉθi ⊆ Cθi} ≥ 1 − γ. Let x̂∗ be the solution to the scenario program in
Equation (12). Then for any K ≤ N and β > 0, it holds that

PN {V (x̂∗) ≤ ε(N, k, β)} ≥ 1− (β + p), (34)

with k = N −K and p = 1−
∑N

i=K

(
N
i

)
(1− γ)iγN−i, i.e.,

PN {V (x̂∗) ≤ ε(N, k, β)} ≥
N∑

i=K

(
N

i

)
(1− γ)iγN−i − β. (35)

Proof. The theorem follows directly from Equation (33) and the reasoning above.
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A.2 Derivation of Theorem 1

We show that Theorem 1 follows as a special case of Theorem 3. Consider an
upMDP MP

Θ and a policy π. Given a evaluation function J , sampled parameters
θi ∼ P induce convex constraints of the form:

Cθi = (−∞, J(π,M[θi])].

Similarly, learned IMDP over-approximations Mγ [θi], where M[θi] ⊆ Mγ [θi],
imply that J(π,Mγ [θi]) ≤ J(π,M[θi]), inducing under-approximations of the
constraints:

Ĉθi = (−∞, J(π,Mγ [θi])] ⊆ (−∞, J(π,M[θi])].

Since P{M[θi] ⊆ Mγ [θi]} ≥ 1 − γ by construction of the IMDPs, Theorem 3
becomes applicable to the solution x̂∗ = J̃ = mini J(π,Mγ [θi]).

Theorem 4 (1). Given N i.i.d. sample MDPs M[θi] and IMDPs Mγ [θi], such
that P{M[θi] ⊆ Mγ [θi]} ≥ 1 − γ. For any policy π and confidence level 1 − η,
with η > 0, it holds that

PN
{
r(π, J̃) ≤ ε(N, γ, η)

}
≥ 1− η, (36)

where J̃ = mini J(π,Mγ [θi]), and ε(N, γ, η) is the solution to

N∑
i=K

(
N

i

)
(1− γ)iγN−i − (1− η) =

N−K∑
i=0

(
N

i

)
εi(1− ε)N−i, (37)

for any K ≤ N .

Proof. By applying Theorem 3, we obtain

PN
{
r(π, J̃) ≤ ε(N, k, β)

}
≥

N∑
i=K

(
N

i

)
(1− γ)iγN−i − β, (38)

with k = N −K, K ≤ N .
Equating the right-hand side to 1 − η, we obtain the following range of

permissible β:

β ≤
N∑

i=K

(
N

i

)
(1− γ)iγN−i − (1− η).

Since the risk ε(N, k, β) for fixed N and k increases as β decreases, the smallest
risk is obtained for the largest possible β, which corresponds to the smallest
possible confidence that adds up to the desired confidence 1 − η. Therefore,
substituting

β =

N∑
i=K

(
N

i

)
(1− γ)iγN−i − (1− η)

into Equations (29) and (38) concludes the proof.
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A.3 Derivation of Theorem 2

To incorporate sample discarding into the setup with uncertain constraints, we
adapt the reasoning above to exclude a fixed number l of the N observable
constraints Ĉθ1:N . Let L ⊆ [N ] with |L| = l be the indices of the discarded
constraints. The probability that there exists a subset of constraints with indices
R = {r1, . . . , rK} ⊆ [N ] \ L, which all contain their under-approximations
Ĉθr ⊆ Cθr ,∀r ∈ R is

PN
{
∃R ⊆ [N ] \ L : |R| = K and ∀r ∈ R : Ĉθr ⊆ Cθr

}
≥

N−l∑
i=K

(
N − l

i

)
(1− γ)iγN−l−i.

(39)
Analogous to Equation (23), we transform Equation (39) into

PN
{
V (x̂∗

N,l) ≤ V (x∗
N,m)

}
≥

N−l∑
i=K

(
N − l

i

)
(1− γ)iγN−l−i, (40)

where x∗
N,l is the solution for constraints Ĉθ1:N without the indices L, and

m = N −K.

Theorem 5 (2). Given N i.i.d. sample MDPs M[θi] and IMDPs Mγ [θi], such
that P{M[θi] ⊆ Mγ [θi]} ≥ 1 − γ, for any policy π, confidence level 1 − η with
η > 0, and number k of discarded samples, it holds that

PN
{
r(π, J̃(k)) ≤ ε(k)(N, γ, η, k)

}
≥ 1− η, (41)

where ε(k)(N, γ, η, k) is the solution to

N−k∑
i=K

(
N − k

i

)
(1− γ)iγN−k−i − (1− η) =

N−K∑
i=0

(
N

i

)
εi(1− ε)N−i, (42)

for any K ≤ N − k.

Proof. From Equation (40) it follows that

PN
{
r(π, J̃k) ≤ ε(N,m, β)

}
≥

N−k∑
i=K

(
N − k

i

)
(1− γ)iγN−k−i − β, (43)

with m = N − K, K ≤ N − k. Equating the right-hand side to 1 − η and
substituting

β =

N−k∑
i=K

(
N − k

i

)
(1− γ)iγN−k−i − (1− η) (44)

into Equations (29) and (43) concludes the proof.
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B Benchmark Environments

We detail the benchmarks used in our experimental evaluation in Section 4.

Autonomous Drone. The autonomous drone benchmark, as described in Section 1,
is adapted from [7]. A drone manoeuvre in a 3D environment, starting from the
origin (see Figure 1a). It aims to reach a target zone while avoiding obstacles.
There are 15 parameters pi, one for each x-coordinate, influencing the probabilities
of the drone drifting off. The evaluation function is the probability of reaching
the goal without crashing into an obstacle.

Betting Game. The betting game is a reward maximisation benchmark introduced
in [9]. The player starts with 10 coins and can sequentially place n bets, risking
either 0, 1, 2, 5, or 10 coins. With probability p, the player wins and earns double
the bet; with probability 1 − p, the bet is lost. The goal is to maximise the
number of coins after n bets. The evaluation function is the expected number of
coins after n bets. We consider a version with n = 8 rounds of betting.

Chain Problem. The chain benchmark was introduced in [2] and consists of
a chain of 6 states with two actions: (1) progressing to the next state with
probability p and falling back to the initial state with probability 1 − p, and
analogous with inverse probabilities. The evaluation function is the expected
number of steps required to reach the last state.

FireWire. The FireWire example is a standard probabilistic verification bench-
mark [28] modelling the execution of a root contention protocol used within
the FireWire standard. A parameter p represents the probability for randomisa-
tion between two competing nodes in order to break symmetry. The evaluation
function is the minimum probability of successful completion.

Aircraft Collision Avoidance. The aircraft collision avoidance environment is
a simplified version of the rich set of models introduced in [33]. We consider a
10× 5 grid where two aircraft, one controlled by our agent and one adversarial,
fly towards each other. In each step, both pilots may choose to fly straight, up,
or down, succeeding with probabilities p and q, respectively. The goal is for the
agent to reach the opposite end of the grid without colliding with the adversarial
aircraft, which manoeuvres arbitrarily. The evaluation function is the probability
of the agent reaching the goal zone without colliding.

Semi-Autonomous Vehicle. The semi-autonomous vehicle benchmark, introduced
in [49] and formalised as a PRISM model in [32], models an explorer moving
through a grid while communicating with a controller via two faulty channels. The
probabilities of each channel losing a message depend on parameters p and q, and
the agent’s current position. In each step, the agent can either communicate over
a chosen channel for a limited number of tries or move in a desired direction. The
agent can only move a certain number of steps without successful communication;
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Table 3: Extended benchmark statistics.
Benchmark Evaluation J Opt. #Parameters Distribution P #States #Transitions

UAV [7] Pr(¬C U T ) max 15 pi ∼ Beta(2, 10) 4096 86912

Aircraft Collision [33] Pr(¬C U T ) max 2 p ∼ Beta(10, 2)
q ∼ Beta(2, 10)

303 3468

Firewire [28] Pr(♢T ) min 1 p ∼ Beta(5, 5) 80980 112990

Semi-Auton. Vehicle [32] Pr(♢T ) max 2 p ∼ Uni(.75, .95)
q ∼ Uni(.55, .85)

411 1503

Betting Game [9] E(♢T ) max 1 p ∼ Beta(20, 2) 480 2730

Chain [2] E(♢T ) min 1 p ∼ Beta(5, 5) 7 42

Table 4: Extended results for performances, guarantees and risk bounds.
Benchmark Policy π

Performance
J

Guarantee
J̃

Risk Bound
ε

Empirical Risk
r(π, J̃)

Risk Bound ε(5)/
Empirical Risk

Risk Bound ε(10)/
Empirical Risk

Runtime per 104

trajectories

UAV IMDP 0.7110 0.7100 0.027 0.003 0.052 / 0.023 0.075 / 0.057 1.51s
RoML 0.6711 0.6700 0.027 0.003 0.052 / 0.023 0.075 / 0.057 1.51s

Aircraft Collision IMDP 0.5949 0.5907 0.027 0.004 0.052 / 0.017 0.075 / 0.046 0.35s
RoML 0.5879 0.5830 0.027 0.006 0.052 / 0.016 0.075 / 0.047 0.35s

Firewire IMDP 0.1946 0.1967 0.055 0.004 0.103 / 0.039 0.146 / 0.081 14.9s
RoML 0.5973 0.5984 0.055 0.004 0.103 / 0.033 0.146 / 0.060 14.9s

Semi-Auton. Vehicle IMDP 0.7854 0.7767 0.027 0.004 0.052 / 0.018 0.075 / 0.033 0.50s
RoML 0.0002 0.0002 0.027 0.003 0.052 / 0.010 0.075 / 0.034 0.50s

Betting Game IMDP 30.78 30.65 0.027 0.005 0.052 / 0.016 0.075 / 0.026 1.12s
RoML 28.51 28.39 0.027 0.005 0.052 / 0.016 0.075 / 0.026 1.12s

Chain IMDP 485.4 487.3 0.027 0.003 0.052 / 0.010 0.075 / 0.034 0.32s
RoML 127.2 128.0 0.027 0.002 0.052 / 0.032 0.075 / 0.054 0.32s

otherwise, the task fails. The evaluation function is the probability of the agent
reaching a goal zone without exceeding the maximum number of steps without
communication. We consider a 10× 5 grid, a maximum of two communication
trials, and only two allowed moves without successful communication.

C Extended Experimental Evaluation

We present the results for the experimental evaluation in Section 4. Table 3
contains extended characteristics for each benchmark, including the underlying
parameter distributions P, unknown to the algorithm. Uni(a, b) is a uniform
distribution over the interval [a, b], and Beta(α, β) is a Beta distribution with
parameters α and β. Table 4 presents the extended results for both policies
learned via IMDP learning and robust meta reinforcement learning. For IMDP
learning we present the results for the best performing interval learning algorithm.
Figure 7 presents the full learning progress for all interval learning algorithms,
which we describe in detail in Appendix D. Figure 7 also shows the resulting
performances and guarantees without model-based optimisations and parameter
tying. For robust meta RL, we used directly parameterised policies [52].
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D IMDP Learning Algorithms

We detail the learning algorithms used: (1) PAC learning (Section 3.1), (2)
Linearly Updating Intervals [51], (3) UCRL2 reinforcement learning [4], and
(4) Maximum a-posteriori (MAP) point estimates [51]. PAC learning is fully
described in Section 3.1 and is applied in policy learning the exact same way we
use it in the learning of IMDP overapproximations of the verification set.

D.1 Linearly Updating Intervals

Linearly Updating Intervals (LUI) is a recent approach for learning IMDPs
from sample trajectories of an unknown MDP, introduced in [51]. It exploits the
Bayesian approach of intervals with linearly updating conjugate priors [51,56].
Although the learned IMDP does not guarantee inclusion of the underlying MDP,
it has been empirically shown to be tighter while remaining sound. For each
uncertain transition P (s, a, s′), LUI updates the interval P I = [P I , P

I
], known

as the prior interval, and the prior strength n.
Given state-action count N = #(s, a) and transition count k = #(s, a, s′)

from sample trajectories, the prior interval is updated to the posterior interval,
as follows:

P I =
nP I + k

n+N
,

P
I
=

nP
I
+ k

n+N
,

with the posterior strength n′ = n + N . In our experiments, we initialize the
prior intervals for each unknown transition as [ε, 1] and set the prior strength to
n = 0.

D.2 Maximum A-Posteriori Point Estimates

Maximum a-posteriori (MAP) point estimates are a well-known principle from
Bayesian statistics and parameter estimation [11]. Given an unknown MDP
with transition probabilities P (s, a, si) for the m successors s1, . . . , sm of a state-
action pair (s, a), the probability of observing ki = #(s, a, si) transitions for each
successor, given N = #(s, a) trials, follows a multinomial distribution:

f(k1, . . . , km | P ) =
N !

k1! · · · · · km!
·

m∏
i=1

P (s, a, si).

Using the Dirichlet distribution as the conjugate prior of the multinomial
distribution [21], we can obtain a posterior distribution over the unknown pa-
rameters P (s, a, si) by updating the prior parameters α1, . . . , αm of the Dirichlet
distribution to α1 + k1, . . . , αm + km. The MAP point estimate is the mode of
the resulting Dirichlet distribution, computed as:
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P̃ (s, a, si) =
αi − 1(∑m

j=1 αj

)
−m

.

We employ the MAP point estimate as point intervals [P̃ (s, a, si), P̃ (s, a, si)].
In our experiments, we initialize all Dirichlet priors to be uniform distributions
with αi = 1.

D.3 UCRL2

UCRL2 is an established reinforcement learning algorithm introduced in [4],
designed to handle the exploration-exploitation trade-off in an unknown environ-
ment. We adapt a modified version from [51] for IMDP learning. Similar to PAC
learning (see Section 3.1), we build transition probability intervals by expanding
the frequentist point estimate:

P̃ (s, a, s′) =
#(s, a, s′)

#(s, a)
,

for a transition (s, a, s′) by δ:

P γ(s, a, s′) = [max(µ, P̃ (s, a, s′)− δ),min(P̃ (s, a, s′) + δ, 1)].

The interval width δ for UCRL2 is defined as:

δ =

√
14|S| · log(2|A| · |T | · 1/γ)

#(s, a)
,

where |S| is the number of states, |A| is the number of actions, and |T |
is the total number of transitions [4,51]. For unvisited state-action pairs with
#(s, a) = 0, we use the interval [µ, 1] as in PAC learning.
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(b) Aircraft Collision Avoidance.
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(c) Firewire.
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(d) Semi-Autonomous Vehicle.
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(e) Betting Game.
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(f) Chain.

Fig. 7: Full process of policy training and performance quantification for the best
performing IMDP policy and RL policy (left), all IMDP policies with model-based
optimisations (middle) and all IMDP policies without optimisations (right).
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