
Revisiting a Pioneering Concurrent Stochastic
Problem: The Erlangen Mainframe

Hubert Garavel1, Holger Hermanns2, and David Parker3

1 Univ. Grenoble Alpes, Inria, Cnrs, Grenoble Inp, Lig, F-38000 Grenoble, France
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

3 University of Oxford, Oxford, United Kingdom
hubert.garavel@inria.fr, hermanns@cs.uni-saarland.de,

david.parker@cs.ox.ac.uk

Abstract. The present article is an essay in research reproducibility af-
ter thirty years. We retrospectively consider a challenging problem pro-
posed in 1994 by Ulrich Herzog and Vassilis Merksiotakis. This problem
was about a multiprocessor computer, the Erlangen mainframe, that
processes jobs of different priorities and is subject to hardware failures.
Using the stochastic process algebra TIPP, a formal model of this main-
frame was specified, which makes intensive use of parallel composition,
multiway synchronisation between two or more concurrent processes,
and compound transitions combining synchronised actions with rates of
Continuous-Time Markov Chains. From this formal model, probabilistic
results about availability, performability, and proper dimensioning of the
mainframe were obtained using the TIPP software tools, which are no
longer maintained. We investigate whether the same experiments can be
reproduced today using state-of-the-art model checkers such as CADP,
PRISM, and Storm.

1 Introduction

The present article was written in honour of Joost-Pieter Katoen and included in
a collective Festschrift book offered to him on the occasion of his 60th birthday.

The topic of this article has a triple connection with the scientific works
of Joost-Pieter Katoen. Firstly, it is about the formal modelling of stochastic
systems, to which he has been contributing so actively [4] [20] [8] [9] [21] [29]
[46] [32]. Secondly, it uses the Storm model checker, which has been developed by
Joost-Pieter Katoen and his collaborators. Thirdly, it builds upon a case study
proposed thirty years ago by the IMMD-7 team of Erlangen (Germany) headed
by the well-known expert on performance analysis and queueing theory, Ulrich
Herzog; at the time, Joost-Pieter Katoen was starting his postdoc in this team,
which was striving for formal methods and tools able to overcome the inherent
limitations of queueing network performance models, with a particular focus on
process algebraic concepts to master complexity — a topic to which the PhD
thesis of Joost-Pieter Katoen had substantially contributed [45].

Over the last three decades, the scientific field of formal methods for per-
formance analysis has flourished, leading to a common understanding of the

various ingredients that make up usable formal models of stochastic timed sys-
tems. Firstly, one or multiple state-transition machines are needed, which may
each be extended with state variables and described in various ways, e.g., us-
ing process algebras. Secondly, these models often include rate transitions, each
with some parameter λ ∈ R+ that corresponds to the elapse of a time period.
For Continuous-Time Markov Chains (CTMCs, for short), which we use in this
paper, the probabilistic duration of a transition is governed by an exponential
distribution with parameter λ. Thirdly, a parallel composition operator supports
running several of these machines concurrently, possibly forcing two or more ma-
chines to synchronise on certain transitions according to actions attached to the
transitions.

Besides fundamental results, many modelling languages, compilers, and anal-
ysis tools have been developed4 [30] [46]. It is therefore instructive to take a
retrospective view and to try applying modern tools to early instances of formal
stochastic modelling, in order to observe how science has progressed.

The publications made during the 1990s by the IMMD-7 team in Erlan-
gen contain, in addition to pioneering ideas, many interesting case studies of
formal methods for stochastic systems. From this list, we selected the “main-
frame” example, which seems to be the oldest example they proposed. This
example is described in two workshop papers published in 1994 [37, Sect. 4] and
1995 [35, Sect. 4]. It was formally described in the TIPP (Timed Processes and
Performance Evaluation) process algebra and analysed with the TIPPtool soft-
ware developed at Erlangen [34], which is no longer maintained. At first sight,
the mainframe example exhibits suitable qualities: it sounds realistic; it seems
detailed enough so that we do not need to invent missing information; its per-
formance analysis generates eight figures that are tempting to reproduce using
state-of-the-art tools.

Our challenge is thus formulated as follows: can we formally describe the
mainframe example using more recent languages than TIPP, and can we repro-
duce in 2024 using modern tools the same experiments done thirty years ago
with the TIPPtool? To this aim, we considered three well-known software tools:

– CADP5 [25], which appeared before the TIPPtool, and has been developed
since the late 1980s. For many years, CADP has been using LOTOS [43]
as its input language (like TIPP, which was also based on LOTOS), but
LOTOS has been progressively replaced by a more recent language named
LNT. CADP provides most of the TIPPtool functionalities for analysing
probabilistic and stochastic systems. CADP received the ETAPS Test-of-
Time Tool Award in 2023.

– PRISM6 [49], which appeared at the same time that the TIPPtool retired,
and has been continuously developed since then. It is a widely-used and
versatile tool, with support for an extensive range of probabilistic/stochastic

4 http://cadp.inria.fr/resources/zoo/
5 https://cadp.inria.fr
6 https://prismmodelchecker.org

http://cadp.inria.fr/resources/zoo/
https://cadp.inria.fr
https://prismmodelchecker.org

models, temporal logics and analysis techniques. PRISM received the ETAPS
Test-of-Time Tool Award in 2024.

– Storm7 [32], a more recent tool developed by Joost-Pieter Katoen and col-
laborators. Storm supports a broad range of probabilistic models, input for-
malisms and techniques, and has established itself as a high-performance
and extendible tool for the verification of probabilistic/stochastic systems.

The present article is organised as follows. Section 2 presents the Erlangen main-
frame, lists the minimal requirements that a specification language should satisfy
to model this system properly, and discusses a few errors and ambiguities found
in the original papers [37] [35]. Sections 3 and 4 report on the novel formal
models that we developed for the Erlangen mainframe in the PRISM and LNT
languages, respectively. Section 5 discusses to what extent we managed to re-
produce the numerical experiments and the eight figures given in [37]. Finally,
Sect. 6 provides concluding remarks and perspectives for future work.

2 The Erlangen Mainframe Modelled in TIPP

2.1 Description of the Erlangen Mainframe

The case study represents a multiprocessor mainframe that is designed to serve
two purposes: (i) it has to maintain an important database and therefore has
to process transactions submitted by a number of users, and (ii) it is used for
program development and has to provide computing capacity to programmers
for compiling and testing their programs. In addition, two interesting features
are present:

– Failures may cause system downtimes, by making the mainframe become
unavailable until it is repaired.

– Two types of priorities are built into the system. Database users need im-
mediate reaction, so they explicitly have priority over the jobs issued by
programmers. Failures cannot be preempted, which implies that they are
neither buffered nor delayed; thus, they implicitly have the highest priority
and take down the system immediately, until repair.

The description of the mainframe is highly modular and hierarchical (see Fig. 1).
On the topmost level, the system is the parallel composition of three parts, the
Loads, the Queues, and the Processors:

– Loads: There are three different arrival streams that put load on the system,
namely the database users, the programmers, and failures. Each of these
arrival streams produce events according to a given arrival rate. This rate
however is not constant, but is instead modelled to vary according to a
so-called Markov Modulated Poisson Process [22]. This means that each
arrival stream has multiple phases (as in morning-afternoon-evening-night),

7 https://www.stormchecker.org

https://www.stormchecker.org

PROG_QUEUE

(Q)

FAIL_QUEUE

(F)

USER_QUEUE

(R)

PROG_LOAD USER_LOAD

user_jobprog_job

get_prog_job

FAIL_LOAD

fail repair

PROCESSOR 1 PROCESSOR 3 PROCESSOR 4PROCESSOR 2

5

prog_job_ready user_job_ready1

get_user_job

3

c

6

3 3

34

1

Fig. 1. Architecture of the Erlangen mainframe (black bullets represent n-ary synchro-
nisations and white triangles represent 1-among-4 competitions for synchronisation)

and changing the phase comes with a change in arrival rate. The phase
changes are governed by yet another rate, and happen synchronously across
the streams; this is achieved by synchronising the three load processes, that
otherwise run independently in parallel, on the phase change.

– Queues: The mediation between the events arriving from the loads and the
processors is handled by three queues. The user queue buffers the jobs gen-
erated by database users; the prog queue buffers the jobs generated by pro-
grammers; the fail queue reacts to failure events by triggering repairs. The
priority mechanisms discussed above are implemented using clever synchro-
nisations, ensuring that programmer jobs are only served if no user jobs are
pending. Both types of jobs are, of course, processed only if the mainframe
is not in a failure state.

– Processors: This part of the mainframe represents a multiprocessor consist-
ing of four identical processors that run in parallel. The processors synchro-
nise altogether on failures and repairs, meaning that failures affect the entire
system, halting all processors, until repair.

The various interactions between the components described above (which
will be represented by processes in our models) are shown in Fig. 1. Transitions
performed simultaneously by multiple processes are modelled using synchroni-
sation. In Fig. 1, the black bullets denote synchronisations, annotated by the
number of processes participating and by an associated action (e.g., prog job
or get prog job). Furthermore, white triangles indicate situations where there is
competition between several processes (here, always those modelling the four
processors) to participate as a process in such a synchronisation.

2.2 Language Requirements for Modelling the Erlangen Mainframe

Because of its intrinsic features, the mainframe problem can only be modelled
properly using languages that satisfy the following five requirements:

(a) It should be possible to express a parallel composition in which n > 1 client
processes execute concurrently and compete together to establish binary
synchronisations/communications with a server process. For instance, the
four processors of the mainframe compete to communicate with the Queues
process on actions get prog job and get user job.

(b) It should be possible to express multiway synchronisation (also known as
n-party rendezvous), i.e., a parallel composition in which n > 1 execute con-
currently and synchronise altogether on given actions. Multiway synchroni-
sation is a powerful feature for modelling intricate systems [27] and, as such,
is heavily used in the Erlangen mainframe, as illustrated by Table 1.

action synchronisation pattern rates

c 3-party rendezvous φ

prog job 3-party rendezvous λ1, λ2

user job 3-party rendezvous µ1, µ2

fail 6-party rendezvous δ1, δ2
repair 5-party rendezvous β

get prog job 4-party rendezvous (3 queues, 1 processor) α

get user job 3-party rendezvous (2 queues, 1 processor) α

prog job ready no rendezvous (interleaving) ξ

user job ready no rendezvous (interleaving) ν

Table 1. Synchronised actions in the Erlangen mainframe

(c) It should be possible to express compound transitions of the form (a, λ),
where a is an action (possibly synchronised with actions of other concurrent
processes) and λ is the rate of an exponentially distributed delay. Indeed, all
actions of the Erlangen mainframe are associated with a rate, as also shown
by Table 1.

(d) It should be possible to express compound transitions of the form (a,1),
where a is an action and 1 denotes a neutral element that means “any rate”.
This neutral element, which exists in TIPP and other stochastic languages
[39] [14] [10] as well, is such that the synchronisation of two transitions
(a, λ) and (a,1) results in a transition (a, λ). It is used in many places in the
mainframe model, where one or multiple partners of synchronisation can be
considered passive.

(e) It should be possible to mix, in the same sequential process, both types of
transitions (a, λ) and (b,1) — contrary to other formalisms, such as I/O
automata, where active and passive actions must take place in different pro-
cesses, as a means to avoid deadlocks. In the mainframe model, such a mix
of transitions occurs in the three load processes and the four processors.

The three languages TIPP, PRISM, and LNT used to formally describe the
Erlangen mainframe all satisfy these five requirements.

We have not yet discussed the semantics of synchronising two transitions
(a, λ) and (a, µ). This has been a matter of debate at the times when stochas-
tic process algebras like TIPP, PEPA [39], EMPA [10], and others [14] were
conceived. Among the various approaches proposed, the TIPP semantics [37,
rule ⟨∥⟩ of Fig. 1] states that the synchronisation of (a, λ) and (a, µ) produces
a transition (a, λµ). This “rate-product” semantics, which was also adopted by
PRISM, TwoTowers [7], and GPA [15], generalises the above requirement (d)
when λ = 1 or µ = 1, assuming that 1 is understood as the rate 1.0 — yet, this
semantics raises the issue of physical units, as rates λ and µ intuitively corre-
spond to frequencies (i.e., the inverse of a duration), but their product does not.8

Anyway, for the Erlangen mainframe, the rate-product semantics is not manda-
tory. Indeed, the mainframe model belongs to a particular subclass of TIPP
models because it satisfies the following “one-to-many” property: in any n-party
synchronisation (with n > 1), only one transition has the form (a, λ) while all
other transitions have the form (a,1). For instance, in the case of the get user job
(resp. get prog job) transitions, the rate α is imposed by the user queue (resp.
prog queue) processes, while the other processes (loads and processors) offer the
neutral rate 1 for these transitions.

2.3 Issues in the Original Papers

While studying the mainframe model, we discovered various problems and am-
biguities in the original papers. We briefly present these issues and explain how
we addressed them:

(1) In the description of the processing unit [37, Sect. 4.2.2], there was a mistake:
in the definition of PW1, the action (user job ready , ξ) should be replaced
with (prog job ready , ξ). This mistake was also present in the second paper
[35, Sect. 4.2.2].

8 There however is a “stoichiometric” interpretation (involving two reactants and a
stochastic reaction constant) that can explain the phenomenon [28,14,11].

(2) The processes ProgLoadi and FailLoadi (where i ∈ {1, 2, 3}) are not specified
in the original papers [37, Sect. 4.1] [35, Sect. 4.1]. As a first approximation,
one may assume that they are pairwise similar to the processes UserLoadi
(where i ∈ {1, 2, 3}), which are fully specified. Obviously, the rate parame-
ters µ1 and µ2 of UserLoadi must be replaced by λ1 and λ2 for ProgLoadi,
and by δ1 and δ2 for FailLoadi. The situation is more involved for the (c, φ)
actions present in the UserLoadi processes. If one assumes that ProgLoadi
and FailLoadi also propose these actions (c, φ), the “one-to-many” prop-
erty is violated: the parallel composition of the load processes with 3-party
synchronisation on c (which is explicitly mentioned in the original papers)
should result, according to the TIPP rate-product semantics, in synchro-
nised actions (c, φ3). This does not seem realistic, given that φ = 0.00334:
the value φ3 = 3.726×10−8 is very small, and would be negligible compared
to other rate transitions. By inspecting the source code of the TIPP models
for the mainframe, to which we have access, we observed that ProgLoadi and
FailLoadi propose actions (c,1) instead of (c, φ), thus ensuring that 3-party
synchronisations result in actions (c, φ) instead of (c, φ3). Such a dissymme-
try between the three load processes was not stated in the original papers;
in our PRISM and LNT models for the mainframe (see Sect. 3 and 4), we
use alternative modelling approaches that give the same results, but preserve
the symmetry between the three load processes.

(3) There is a 5-party synchronisation on action repair between the failure queue
and the four processors. However, the two original papers differ in the way
rates are associated to the repair action. In the first paper [37, Sect. 4.2.1
and 4.2.2], the failure queue offers the action (repair ,1) while each processor
proposes a (repair , β/4) action; this violates the “one-to-many” property
and, according to the semantics of TIPP, results in a synchronised action
(repair , (β/4)4). In the second paper [35, Sect. 4.2.1 and 4.2.2], the failure
queue offers the action (repair , β) while each processor proposes a (repair ,1)
action, leading to a synchronised action (repair , β). We opted for the latter
model, which is simpler and, based on the source code of the original TIPP
models, seems to have been used for experiments.

(4) In both original papers, the machine is defined as a parallel composition
involving four processors P , i.e., Machine = Queues ||B (P ||C P ||C P ||C P),
where B and C are sets of actions to be synchronised. However, in all the
source TIPP files, the four processors are replaced by a single (equivalent)
sequential process; the rationale behind such a simplification is exposed in
[35, Sect. 4.3]: it reduces the size of the model’s state space, but at the risk
of potentially introducing errors if the modification is done manually. We
found such a multiplicity of TIPP models annoying, making it harder to
follow each experiment in detail. Instead, we opted for a unique model of the
mainframe, with four processors composed in parallel.

1 // phase : 1=low , 2=high , 3=i d l e
2

3 const int l i n i t ; // i n i t i a l phase (1 , 2 , or 3) for loads
4

5 module ProgLoad // programmer (low p r i o r i t y) jobs
6 pl : [1 . . 3] in i t l i n i t ;
7 [p rog job] p l = 1 −> lambda1 : (pl ’ = 1) ; // prog job a r r i v a l
8 [p rog job] p l = 2 −> lambda2 : (pl ’ = 2) ; // prog job a r r i v a l
9 [c] true −> (pl ’ = mod (pl , 3) + 1) ; // phase change

10 endmodule
11

12 module UserLoad // user (high p r i o r i t y) jobs
13 ul : [1 . . 3] in i t l i n i t
14 [u s e r j ob] u l = 1 −> mu1 : (ul ’ = 1) ; // user job a r r i v a l
15 [u s e r j ob] u l = 2 −> mu2 : (ul ’ = 2) ; // user job a r r i v a l
16 [c] true −> (ul ’ = mod (ul , 3) + 1) ; // phase change
17 endmodule
18

19 module FailLoad // f a i l u r e s
20 f l : [1 . . 3] in i t l i n i t ;
21 [f a i l] f l = 1 −> de l ta1 : (f l ’ = 1) ; // f a i l u r e occurrence
22 [f a i l] f l = 2 −> de l ta2 : (f l ’ = 2) ; // f a i l u r e occurrence
23 [c] true −> (f l ’ = mod (f l , 3) + 1) ; // phase change
24 endmodule
25

26 module LoadPhase // rate for phase change of loads
27 [c] true −> phi : true ;
28 endmodule

Fig. 2. PRISM model fragment specifying the load modules

3 Modelling the Erlangen Mainframe in PRISM

The PRISM modelling language provides a consistent formalism for specifying
the various different types of probabilistic models that are supported by the tool.
The language is also accepted by many other probabilistic verification tools, no-
tably Storm, which we also make use of in the present article, and has established
itself as a common format for model exchange and benchmarking [50,31].

It is inspired by the Reactive Modules formalism of Alur and Henzinger [1],
taking a slightly simplified version of this language and extending it with support
for models with probabilistic behaviour. PRISM models comprise the parallel
composition of multiple modules, which are able to perform (binary or multiway)
synchronisation, thus satisfying the requirements outlined in Sect. 2.2.

The state of a module is described by a set of finite-ranging variables and
its dynamics by guarded commands of the form [a] g → λ1 : u1 + . . . λn : un,
which state that if guard g (a predicate over the global state of the model)
is satisfied, then an a-labelled transition can occur in which module variables
change according to one of the updates ui. The values λi annotate each update
ui with the rate (for a CTMC, as here) or probability (for models with discrete
probabilistic semantics) with which it occurs.

Fig. 2 shows a fragment of the PRISM model, namely, four simple modules
that implement the Loads processes mentioned in Sect. 2.1. For instance, the
module UserLoad describes the arrivals process for user jobs (i.e., the UserLoadi
processes described in Sect. 2). Variable ul tracks the phase, which increases

periodically via a transition labelled with action c. This is specified by the third
command, with the notation ul’=expr denoting that the value of ul will be
updated to expr after the transition has occurred. The first two guarded com-
mands, labelled with user job, synchronise with another module representing the
user queue. The state of module UserLoad does not change when this transition
occurs, but its state determines the rate attached to the transition (µ1 or µ2,
depending on the phase).

In PRISM (as in TIPP), the combined rate of two synchronising transitions
is taken to be the product of the individual rates. We often use the strategy,
discussed earlier, of making one transition passive, with rate 1 (echoeing the
neutral element 1), with the other transition specifying the rate. For example,
in Fig. 2, each c transition in modules ProgLoad , UserLoad , and FailLoad is
passive (an omitted rate is assumed to be 1) and a separate module LoadPhase,
without any local state, provides the rate φ. This approach is adopted in this
case to permit multiple modules (the three load-related components) to engage
in multiway synchronisation (since their phases change simultaneously) with the
rate specified separately, for convenience and clarity.

The full model, including the properties, is 250-line long (150 lines if com-
ments and blank lines are excluded)9. It comprises 11 modules, which are com-
posed using the PRISM’s default parallel composition operator ||, under which
modules synchronise on their common actions and can transition asynchronously
on others. In doing so, we deviate slightly from the original TIPP model, which
composes the four processors asynchronously, allowing them to have common
actions such as get user job, that synchronise only with other modules and
not with each other. This is achievable with the ||| operator within PRISM’s
“system. . .endsystem” construct but, since this is not supported by all tools,
we instead use || and include four copies (one for each processor) of actions such
as get user job.

4 Modelling the Erlangen Mainframe in LNT

The PRISM modelling language is not considered as a process algebra, although
its parallel composition operators are those of TCSP [12] [41]. As the Erlangen
mainframe was originally specified in the process algebra TIPP, it makes sense
today to reformulate it using a recent process algebra such as LNT.

LNT [26] [57] [17] is a modern language for describing complex concurrent
systems, which derives from the international standards LOTOS [43] and E-
LOTOS [44], and therefore combines the best ideas from TCSP and CCS [55]
[56]. It also draws inspiration both from functional programming languages and
imperative languages, such as CSP [40], Occam [54] [42] [6], and Ada [2].

The following LNT constructs are used to describe the Erlangen mainframe:
“par E1...Em in B1 ||...||Bn end par” specifies the parallel composition of n

9 The model has been added to the PRISM benchmark suite [50], under the name
“erlangen”, and all files needed for the analysis done in this paper are available from
https://www.prismmodelchecker.org/files/erlangen/.

https://www.prismmodelchecker.org/files/erlangen/

behaviours B1, ..., Bn, which should all synchronise on m events E1, ..., Em;
“alt B1 []...[]Bn end alt” specifies the nondeterministic choice between n be-
haviours B1, ..., Bn; “loop B end loop” and “loop L in B end loop” specify
the infinite repetition of behaviour B, the latter being possibly interrupted by
a “break L” construct; “if V then B end if” and “case V in ... end case”
specify conditionals; “var X : T in B end var” declares a variable X of type
T that is local to behaviour B; variables can be modified using assignments of
the form “X := V ”; “E” specifies the occurrence of event E (pure synchro-
nisation); “E(V)” and “E(?X)” specify, respectively, the emission of value V
on event E, and the reception of some value in variable X on event E; finally,
“process P [E1 : C1, ..., Em : Cm](X1 : T1, ..., Xn : Tn) is B end process” de-
clares a process P of body B with m event parameters E1, ..., Em having channel
types C1, ..., Cm, and n variable parameters X1, ..., Xn having types T1, ..., Tn.

LNT, like LOTOS, has no built-in notion of probabilities or rates and, thus,
cannot express DTMCs or CTMCs directly. It is nevertheless possible to use
LOTOS or LNT to specify and analyse Markovian systems [23] [18] [53]. So far,
this has been mostly done in the theoretical framework of Interactive Markov
Chains (IMCs) [33] and Interactive Probabilistic Chains (IPCs) [19], in which
the transitions labelled with a rate or a probability are clearly separated from
ordinary transitions. The Erlangen mainframe is radically different from IMCs
and IPCs since all its transitions are compound (see Sect. 2.2).

In our LNT model, we translate each TIPP transition (a, λ) with λ ̸= 1 to
an LNT transition “a(λ)”, where a is an LNT event and λ a rate, meaning that
λ is a value emitted on a. Intuitively, λ could be simply a real number but, for
convenience, we defined instead a RATE type, the values of which are either real
numbers or symbolic names (β, δ2, µ2) of rate parameters defined in [37].

In our LNT model, we also translate each TIPP transition (a,1) to an LNT
transition “a (any RATE)”, meaning that some rate value is received on a. The
synchronisation rules of LNT, which are those of TCSP and LOTOS, ensure
that the synchronisation of a(λ) and a (any RATE) gives a(λ), which is the
same result as in TIPP when (a, λ) is synchronised with (a,1). Notice that
we do not translate (a,1) to “a(1.0)”, which would probably cause a deadlock
according to the synchronisation rules of LNT.

The complete LNT model for the Erlangen mainframe is 250-line long (200
lines if comments and blank lines are excluded)10. For instance, Fig. 3 shows
how the three load processes are described in LNT.

Although the encoding of rates in compound transitions is radically different
from the IMC theory, we get here the same benefits as for the IMC approach:
to describe and analyse stochastic systems, we can apply a “classical” process
algebra (i.e., LNT or LOTOS), keeping its semantics unchanged and reusing its
software tools without modification. Such a systematic translation to LNT of
the original TIPP model is only correct because two conditions hold:

10 All files can be found in the demo example “demo 15” of CADP, which is available
from https://cadp.inria.fr/demos.html

https://cadp.inria.fr/demos.html

1 process LOADS [C, FAIL , PROG JOB, USER JOB: DELAY] (DELTA1, DELTA2,
2 LAMBDA1, LAMBDA2, MU1, MU2, PHI : RATE, INIT PHASE : PHASE) i s
3 par C in
4 LOAD [C, FAIL] (DELTA1, DELTA2, PHI , INIT PHASE)
5 | |
6 LOAD [C, PROG JOB] (LAMBDA1, LAMBDA2, PHI , INIT PHASE)
7 | |
8 LOAD [C, USER JOB] (MU1, MU2, PHI , INIT PHASE)
9 end par

10 end process
11

12 process LOAD [C, JOB: DELAY] (R1 , R2 , PHI : RATE, in var P: PHASE) i s
13 loop
14 case P in
15 1 −> −− low−load phase
16 loop PHASE1 in
17 alt
18 JOB (R1)
19 []
20 C (PHI) ;
21 break PHASE1
22 end alt
23 end loop ;
24 P := 2
25 | 2 −> −− high−load phase
26 loop PHASE2 in
27 alt
28 JOB (R2)
29 []
30 C (PHI) ;
31 break PHASE2
32 end alt
33 end loop ;
34 P := 3
35 | 3 −> −− i d l e phase
36 C (PHI) ;
37 P := 1
38 end case
39 end loop
40 end process

Fig. 3. LNT model fragment specifying the load processes

(1) The mainframe model satisfies the “one-to-many” property stated in
Sect. 2.2, meaning that each a(λ) may only be synchronised with wildcard
receptions “a (any RATE)”. The LNT semantics does not support the prod-
uct of rates, so that a synchronisation of a(λ) and a(µ) does not give a(λµ)
as in TIPP, but either stop if λ ̸= µ or a(λ) if λ = µ. Notice that Fig. 3 ex-
ploits the latter property, as the parallel composition of the nearly identical
load processes involves a 3-party synchronisation between three transitions
(c, φ), which, in LNT but not in TIPP, has the same effect as synchronising
one transition (c, φ) with two transitions (c,1).

(2) The LNT compilers of CADP represent the transitions going out of each
state using a multiset, rather than a set: for instance, the LNT behaviour
“alt a(λ) [] a(λ) end alt” will not generate a single transition “a(λ)” (i.e.,
will not factorise identical transitions as permitted by the operational seman-
tics of most process algebras), but a choice between two “a(λ)” transitions

— which are later merged into a single transition “a(2λ)” when applying
strong or branching stochastic bisimulation.

To reproduce the numerical results of the original papers (see Sect. 5 below),
one needs to express properties about certain state variables. In this respect,
LNT follows the principles of process algebras and labelled transition systems:
information is attached to transitions, not to states, so that the contents of states
cannot be observed. The usual solution is therefore to add self-loop transitions
(called “probes”) to the LNT model, the labels of these transitions exporting
information contained in the states they are attached to.

In the mainframe model, probes need to be introduced only in the three queue
processes. In the fail queue, we insert a z avail probe that is attached to each
global state of the CTMC in which the local state of the fail queue is F0 (“work-
ing”) rather than F1 (“failed”). In the prog queue, we insert a z prog queue(n)
probe that is attached to each global state of the CTMC in which the prog queue
contains n jobs. In the user queue, we insert a similar z user queue(n) probe.

5 Numerical Solutions

5.1 Objectives and Methodology

The original paper [37, Sect. 4.3] provides eight figures, numbered from 3 to 10 ;
we surround these numbers by square boxes to distinguish them from figure
numbers of the present article. Two figures (Fig. 7 and 8) can also be found
in [35]. Figures 3 , 4 , 5 , and 6 are about steady-state probabilities (i.e., in the
long term, after an equilibrium has been reached). Figures 7 , 8 , 9 , and 10 are
about transient probabilities (i.e., at specific time instants).

Our challenge, as we defined it, was to reproduce these eight figures by ap-
plying the CADP, PRISM, and Storm tools to our models of the mainframe.

Obtaining the same values as in the original paper was not an easy task,
as several difficulties arose. As could be seen from the source TIPP files, the
authors did many experiments, with different TIPP models (featuring different
processor models), different queue sizes, and different rate parameters.

Such a variability has undesirable consequences: these experiments are dif-
ficult to follow because of their multiple experimental settings, and they are
difficult to reproduce, as information is incomplete in places, with useful details
and parameter values missing from the original paper.

In particular, numerical results do not always match across figures because
of untold changes in models or parameters. For instance, Fig. 9 of [37], which
assumes a couple of fixed values for the parameters β and δ2, displays a steady-
state availability result A(∞) = 0.981, this value being independent from the
phase in which the load processes are started. But in Fig. 5 of [37], which
assumes that the load processes are started in phase 1 and explores various
values of β and δ2, none of the steady-state availability results displayed for
A(∞) matches the value 0.981 of Fig. 9 . Looking into the TIPP files, we presume

that Fig. 9 was obtained by using a simpler processor model and different queue
sizes (4, 4) than Fig. 5 .

In a first attempt, we fought to reproduce exactly the same values as in the
original paper by redoing the same experiments with various models, various
queue sizes, and various sets of rate parameters. Using PRISM, we managed to
reproduce the original results for Fig. 5 – 8 with good precision (from 3 to 6
decimal places).

We then considered that an exact reproduction of the original experiments
was perhaps not the most suitable goal. Rather than mere imitation, we felt
it would be better to recreate a simplified experimental setting that would be
easier to understand, so that the mainframe example would get, hopefully, more
chances to be studied by others and reused for various purposes, e.g., as a bench-
mark for performance analysis tools or as a lab exercise in university classrooms.

We therefore adopt the following simplifying assumptions, which will be de-
tailed and justified below:

– We use a unique model of the mainframe, which is parameterized by the
maximal sizes of the prog queue and user queue, and by the initial phase (1,
2, or 3) in which the three load processes are stated.

– Concerning the maximal queue sizes, the original paper [37, Sect. 3.4] ob-
served that reducing them from (40, 10) to (10, 4) does not sacrifice model
accuracy very much. We further reduce these sizes to (4, 4) by default, since
larger sizes do not change the shape of figures (as justified below in Sect. 5.6),
but increase the number of states of generated CTMCs and the execution
time for computing steady-state and transient probabilities.

– Concerning the initial phase, we start all load processes in phase 1 (low load)
by default. We verified that, despite the sophisticated behaviour of the three
load processes (with three phases and different rates λ1, λ2, µ1, µ2, δ1, δ2,
and φ), the long-run probability of being in each phase is identical (i.e.,
1/3) for each of the three phases. This suggests that, when the three load
processes are connected to the three queues, their sophisticated behaviour
becomes more regular, just as a torrent loses its capricious flow when it pours
into a reservoir lake with a barrage.

– Concerning the rate parameters, most of them have constant values, meaning
that the impact of their modification is not studied in the experiments for
producing Fig. 3 – 10 . We assign the following rate parameters the same
default values as in the original paper [37]:

α = 48 β = 0.01 δ1 = 0.00035 δ2 = 0.0007 λ1 = 0.01667
λ2 = 0.16 µ1 = 0.033 µ2 = 2 ν = 12 φ = 0.00334 ξ = 0.3

All these values are expressed in the same unit: min−1. Only three of these
parameters (β, δ2, and µ2) vary in the experiments.

Under these assumptions, and a few others to be stated hereafter, we obtain
numerical results that are close to those of the original papers and, noticeably,
preserve the shape of the curves of Fig. 3 – 10 . We now detail how to reproduce
each of these eight figures in turn.

5.2 Reproduction of Figures 3 and 4 (Steady-State Analysis)

These two figures, which appear only in the first original paper [37], answer a
dimensioning question: they explore how the size of queues impacts the prob-
ability that the mainframe system is blocked, waiting for new requests to be
processed. Fig. 3 concerns the prog queue (denoted Q in the original papers)
for low-priority jobs. Fig. 4 concerns the user queue (denoted R in the original
papers) for high-priority jobs. Both figures vary two parameters: the queue size
and the arrival rate µ2 of user jobs. Fig. 4 displays the figures generated using
CADP — those generated using PRISM being similar.

Fig. 4. Figures 3 and 4 generated using CADP

These two figures have been the most difficult ones to reproduce, because of
ambiguities and lack of information. We briefly mention the issues we faced and
the solutions we adopted:

(a) The z-axis of Fig. 3 and 4 are labelled P(Q = l | load = “high”) and
P(R = l | load = “low”), respectively. Here, “l” does not denote the digit
one, but the queue length indicated on the x-axis of both figures. To avoid
any confusion, we hereafter denote queue length with a capital “L”.

(b) In the original paper, the x-axes of Fig. 3 and 4 start at L = 0 and the
shape of the curves gives the impression that there is a value on the z-axis
when the queue length is zero — this value being the probability 0.002 for
Fig. 3 and 0.051 for Fig. 4 . This is not the case actually: the probabilities
when L = 0 are very high (close to one) and would make the plots unreadable
if displayed. To avoid such a misleading impression, the x-axes of our Fig. 3
and 4 explicitly start at L = 1 rather than L = 0.

(c) In Fig. 3 , the x-axis displays the queue length L ranging from 1 to 40. This
allows two possible interpretations: either (i) the mainframe system has a
prog queue Q of size 40, and the z-axis of Fig. 3 represents the distribution
over L (and µ2), i.e., the probability that the prog queue has L elements, for
all possible values of L but zero; or (ii) each value of L represents a different

instance of the mainframe system in which the prog queue has size L, and
the z-axis represents the probability that the queue is full, i.e., contains L
elements. Both interpretations are also plausible for Fig. 4 , in which the size
L of the user queue R ranges from 1 to 10. We opted for the first interpre-
tation, which seems compatible with the legends of Fig. 3 and 4 , namely
“Queue Length Distribution for Low Priority Jobs” and “Queue Length Dis-
tribution for High Priority Jobs”. We implemented both interpretations in
LNT and compared the results obtained using CADP: the probabilities are
actually different, but the differences are so small that the shapes of Fig. 3
and 4 do not change.

(d) The z-axis labels of Fig. 3 and 4 , namely, P(Q = L | load = “high”) and
P(R = L | load = “low”) suggest that they express conditional probabilities,
although the notion of conditional probability is not mentioned anywhere in
the original papers. We first tried to interpret z-axis values this way by
computing them according to the definition of conditional probabilities, i.e.:

P(Q = L | load = “high”) =
P(Q = L ∩ load = “high”)

P(load = “high”)

and:

P(R = L | load = “low”) =
P(R = L ∩ load = “low”)

P(load = “low”)

As mentioned already, we observed, using PRISM and CADP, that the
steady-state probabilities P(load = “high”) and P(load = “low”) are both
equal to 1/3. To compute the probabilities of both intersections, additional
probes were introduced in the LNT specification to indicate when the phase
of the load processes is high or low; these probes were then synchronised
with the probes expressing the number of items in each queue, and their
steady-state throughput was computed using CADP. Doing so, we obtained
curves that were similar to those of the original paper, but with a visible
difference in the z-axis values when L = 1. We thus decided to forget about
conditional probabilities and to simply compute P(Q = L) and P(R = L)
for the z axes; despite this simplification, we still obtain plausible curves.

Finally, we produced Fig. 3 and 4 (see Fig. 4) that closely resemble those of
the original paper. Yet, the maximal values on the z-axis (when L = 1 and
µ2 = 10) are not the same: in [37], these probabilities are approximately 0.002
for Fig. 3 and 0.051 for Fig. 4 ; on our figures, they are 0.0015 for Fig. 3 and
0.03 for Fig. 4 . This probably arises from differences in mainframe models and
rate parameters used for the various experiments.

5.3 Reproduction of Figures 5 and 6 (Steady-State Analysis)

These two figures describe the impact of failures and repairs on the processing
of high-priority jobs. To do so, these figures vary the failure arrival rate δ2
and the repair rate β and display, for each pair (δ2, β), an availability value,

denoted A(∞), for Fig. 5 and a throughput value, denoted M(∞), for Fig. 6 .
Fig. 5 displays the figures generated using CADP, which are identical to those
generated using PRISM, as well as those given in the original paper [37].

Fig. 5. Figures 5 and 6 generated using CADP

In Fig. 5 , A(∞) is the steady-state limit of the point availability A(t), which
is defined [37, rule (2) of Sect. 3.2] as the probability that the mainframe is
operational at time t; the intended meaning of “operational” here is that the
failure queue process, which has two states F0 and F1, is in state F0 where no
failure is taking place. A different definition of “operational” (e.g., all processors
are serving jobs) might produce different numerical results.

In Fig. 6 , M(∞) is the steady-state limit of the point throughput M(t) of
the action get user job that occurs every time a high-priority job is submitted
to the processors. M(t) can be defined, according to [37, rules (9) and (10) of
Sect. 3.2], as M(t) =

∑
i∈1,...,n r(si)P (X(t) = si), where si iterates over all

reachable states of the CTMC, and where r(si) =
∑

j ρj for all (get user job, ρj)
transitions going out of state si.

5.4 Reproduction of Figures 7 and 8 (Transient Analysis)

These two figures bear similarity with Fig. 5 and 6 but display transient values
for, respectively, point availability A(t) and point throughput M(t) instead of
displaying their steady-state limits A(∞) and M(∞). Also, Fig. 7 and 8 assume
a constant value (namely, 0.0007) for the parameter δ2 and, rather than varying
δ2, consider 15 different time instants.

Fig. 6 shows the figures generated using CADP and PRISM. These figures
are pairwise identical, and also identical to those given in the original papers
[37] and [35].

Fig. 6. Figures 7 and 8 generated using CADP (top) and PRISM (bottom)

5.5 Reproduction of Figures 9 and 10 (Transient Analysis)

These two figures are similar to Fig. 7 and 8 , with the difference that they give
the parameter β a constant value (namely, 0.01) and vary the phase, i.e., the ini-
tial state (“low”, “load”, or “idle”) of the three load processes — these processes
being all started in the same phase and modifying their phases simultaneously
by means of a 3-party synchronisation on action c.

Fig. 7 shows the Fig. 9 and 10 generated using CADP. We felt that the top
label of Fig. 9 in [37] (“Point Availability During High Load Phase”) was mis-
leading, as it suggests the use of conditional probabilities that are never evoked
elsewhere in the original papers; we therefore changed this label to “Point Avail-
ability”, while a longer, completely accurate label would be “Point Availability
upon Initialisation in High Load”.

The curves of Fig. 9 obtained using CADP and PRISM clearly have the same
shape as those of the original paper. However, the values are slightly different. For
instance, the steady-state limit A(∞) is 0.967 for CADP and PRISM, whereas
it was 0.981 in [37]. We already discussed this issue in Sect 5.1 and believe that
our Fig. 9 is coherent, as its value 0.967 matches the steady-state value of our
Fig. 6 for β = 0.01 and δ2 = 0.0007 (see Fig. 5), which was not the case in the

Fig. 7. Figures 9 and 10 generated using CADP

original paper. Interestingly, the value of β has a key influence on the shape of
Fig. 9 (see Fig. 8 for a comparative view). Finally, our Fig. 10 is identical, in
shape and values, to the one of [37].

5.6 Impact of Queue Sizes

The original paper [37] claims that reducing queue sizes from (40, 10) to (10,
4) has little impact on numerical results; we went further in this direction by
reducing queue sizes to (4, 4). In this section, we present additional experiments
that support these claims.

Table 2 summarises the experiments done with CADP for various sizes of
the prog queue and user queue. For each experiment, the 2nd column of the
table gives the number of states of the corresponding CTMC, after minimisation
modulo stochastic strong bisimulation. The 3rd, 4th, and 5th columns quantify
the loss of precision in the set of throughput values generated for Fig. 5 – 6 ,
Fig. 7 – 8 , and Fig. 9 – 10 , respectively; the loss of precision for line (m,n) and
column C is defined as the largest value, for i ∈ {1, ..., n}, of 2 |xi − yi|/(xi +
yi), where {x1, ..., xn} is the set of throughput values generated for queue sizes
(40, 10) and the figures of column C, and {y1, ..., yn} the set of throughput values
generated for queue sizes (m,n) and the figures of column C.
From this table, we draw three conclusions:

– The numbers of CTMC states for queue sizes (40, 10) and (10, 4) are exactly
those mentioned in [37, Sect. 4.3]. The fact that we obtain the same numbers
is a clear indication that our LNT and PRISM models are compatible with
those of the original paper.

– The losses of precision for queue sizes (10, 4) and (4, 4) are equal. Actually,
all the throughput values for (10, 4) and (4, 4) are pairwise identical, except
in two cases where a difference occurs at the 6th decimal position (0.63996 vs
0.639961). This retrospectively justifies our decision of reducing queue sizes
to (4, 4).

Fig. 8. Variants of Fig. 9 for β = 0.002, 0.005, 0.008, and 0.011

– Globally, the sizes of queues have negligible impact (≈1.5%) on throughput
values. This appears as a specific consequence of the chosen rate parameters
and particular experiments for producing Fig. 5 – 10 .

5.7 Using PRISM and Storm

We analysed the mainframe model using both the PRISM and Storm toolsets.
There are differences in the two tools’ overall functionality and focus (e.g., sup-
port for Markov automata only in Storm, and for stochastic games only in
PRISM/PRISM-games), but there is a large common core of probabilistic model
checking functionality, including what is needed for this exercise. The inputs to
the two tools, in terms of model and property specifications, are identical for
our purposes, since Storm accepts the PRISM modelling language (for which we
activate the “PRISM-compatibility mode” of Storm) and the tools largely agree
on the syntax for temporal logic queries.

Temporal logic. For property specifications, we use the temporal logic CSL
(continuous stochastic logic) [3,4], which is a branching-time temporal logic for
characterising transient and steady-state aspects of CTMCs. In the years since
the mainframe example was first developed, CSL has established itself as widely
used means to formally specify performance and reliability criteria of computer

queue size CTMC states Fig. 5 – 6 Fig. 7 – 8 Fig. 9 – 10

(40, 10) 21,648 — — —

(30, 8) 13,392 0.0031% 0.0032% 0.0032%

(20, 5) 6048 0.0186% 0.0187% 0.0196%

(10, 4) 2640 0.0312% 0.0314% 0.0326%

(4, 4) 1200 0.0312% 0.0314% 0.0326%

(3, 3) 768 0.0527% 0.0530% 0.0551%

(2, 2) 432 0.1121% 0.1126% 0.1167%

(1, 1) 192 1.4955% 1.4988% 1.5262%

Table 2. Impact of queue sizes

and communication systems, bridging the fields of performance analysis and
formal verification [5].

For the mainframe example, we use the following formulae:

(i) S=?[ujq=l]: long-run probability of queue length being l (Fig. 3 and 4)
(ii) S=?[fq=0]: long-run availability (Fig. 5)
(iii) Rthru hi

=? [S]: long-run throughput of high-priority jobs (Fig. 6)
(iv) P=?[F

=T fq=0]: point availability (Fig. 7 and 9)
(v) Rthru hi

=? [I=T]: point throughput of high-priority jobs at time T (Fig. 8)

The formula S=?[φ] asks for the long-run (steady-state) probability that pred-
icate φ is true. Here, we write φ in terms of the variables that make up the
PRISM model: ujq is the current size of the user queue and fq equals 1 if the
mainframe has failed, 0 if not. Formula P=?[F

=Tφ] is the transient equivalent,
asking for the probability of φ being true at time instant T .

Formulae Rr
=?[S] and Rr

=?[I
=T] ask for the expected value of a reward r

in the long-run and at time instant T , respectively. Here, thru hi is a reward
structure that, in any state, equals the total rate of outgoing (user job ready)
transitions that correspond to a user job being processed. We note that the
current exercise illustrates some of the benefits of temporal logic, conveying
easily and precisely the properties being used, in a form directly accessible to
multiple tools.

Solution methods and performance. CSL model checking [4] of the formu-
lae above essentially reduces to either steady-state or transient solution of the
CTMC. Steady-state analysis is done in [37] using iterative numerical techniques,
in particular the Gauss-Seidel method. PRISM takes exactly the same approach.
Storm’s default technique here is also iterative: the generalised minimal residual
method (GMRES) method, with ILU preconditioning.

Transient analysis in [37] is performed using the refined randomisation tech-
nique [52], which is very similar to the method known as uniformisation, pro-
posed for CSL model checking in [4] and used by most probabilistic model check-
ers. In this sense, in contrast to the situation for other classes of probabilistic

models, the default techniques used to solve core CTMC queries by modern
probabilistic model checkers have not changed significantly.

Performance, however, has of course improved. While [37] reports numerical
solution of the CTMC for queue sizes (40, 10) taking about 165 seconds, PRISM
and Storm build and solve the model in 2-3 seconds. Whilst the numerical so-
lution part, which uses similar techniques to [37], is largely benefitting from
hardware advances, other aspects of the process have changed. Techniques for
model exploration and construction, for example, have improved. For the largest
mainframe instance we considered here (∼1.6 million states), both PRISM and
Storm build the model in just a few seconds, the former with symbolic (binary
decision diagram based) methods, the latter using explicit-state techniques.

As has been investigated at length [16], comparing the runtime of proba-
bilistic verification tools needs to be done with considerable care when they use
different solution methods offering different guarantees on the precision of their
results. In this particular case, the methods and their configuration are very sim-
ilar (for example, both tools by default terminate iterative numerical methods
when they have converged to within a maximum relative difference of 10−6).
Whilst [16] showed Storm to generally perform better than other comparable
tools across a broad range of benchmarks and model types, on these CTMCs,
PRISM, and Storm exhibit very similar runtimes, e.g., both taking ∼34 seconds
to solve the (steady-state) property (ii) above on a CTMC with 922,746 states.

Queue CTMC states Transient (T=1000) time (s) Steady-state time (s)
size Full Reduced No bisim. Bisim. Change No bisim Bisim Change

40,10 110,946 21,648 93.3 19.0 -80% 2.2 1.1 -50%
80,20 418,446 81,648 331.9 78.7 -76% 13.2 11.0 -17%
120,30 922,746 180,048 1,328.3 492.5 -63% 33.8 37.7 12%
160,40 1,623,846 316,848 1,949.1 505.0 -74% 71.8 125.2 74%

Table 3. Computation times (Storm) for transient and steady-state properties with
and without bisimulation minimisation.

Bisimulation. Since strong bisimulation (lumping) for CTMCs [13,38,48] is
known to preserve satisfaction of the logic CSL, a key result shown in [4], we
also investigate applying bisimulation minimisation before model solution. Once
such a minimisation has been applied (to the PRISM model described in Sect. 3),
both PRISM and Storm produce models of exactly the same size as generated
by CADP and as in [37]. Lumping is mentioned in [37] but does not seem to
be applied. In fact, investigation shows that the reduction in size produced by
minimising the PRISM model of Sect. 3 is solely due to redundancy in the
representation of the state of the processors, and manually exploiting this at
the modelling language level (by combining the processors into a single abstract
process, already discussed at the end of Sect. 2.3) yields precisely the same

reduced models. This suggest that applying bisimulation to the models of [37]
may have yielded no further reductions anyway.

It is known, from practical investigations in [47] that minimisation can, but
does not always, result in an overall reduction in computation time, depending
on whether the benefits of solving a smaller, minimised CTMC outweigh the cost
of performing minimisation. We measured times for representative CSL queries
– (iv) and (ii) above – on CTMCs of various sizes, created by varying queue
sizes. Although Section 5.6 showed that this has limited effect on the numerical
results obtained, this provides a convenient way to examine the impact of the
state space size on performance. To see this impact more clearly, we use larger
models than in the earlier sections. Table 3 shows models sizes and times to run
Storm (which has a larger range of minimisation options built in; here we use
the default settings) with and without bisimulation. The faster of the two times
are indicated in bold face.

We see that all models are reduced by the same amount: a factor of 5.25.
Regarding computation time, we observe that minimisation yields significant
gains (a factor 4 speed-up) for the transient property. On the other hand, for the
steady-state property, the gain decreases with model size and using minimisation
eventually becomes slower. This seems to be caused by an increase in the number
of iterations required for numerical solution of the minimised model to converge,
despite its smaller size (both in terms of the number of states and the average
number of transitions for each state).

5.8 Using CADP

Unlike PRISM and Storm, which are integrated tools, CADP is rather a tool set,
i.e., a collection of about fifty different tools that can be combined to achieve very
diverse tasks. Only a small fraction of these tools is dedicated to the analysis
of probabilistic and stochastic systems. CADP does not support a stochastic
temporal logic such as CSL, but provides various tools that compute strong
and branching stochastic bisimulations, steady-state probabilities, and transient
probabilities [36] [18].

The CADP tools can be invoked directly from the command line or, in the
case of involved scenarios, from verification scripts written in SVL language11

[24] [51]. SVL eases the combination of the various CADP tools and plays a
crucial role for the reproducibility of experiments. It provides high-level CADP-
specific language constructs, which can be freely combined with POSIX shell
commands. The latter, which are preceded by the escape symbol ‘%’, provide
for variable assignments and substitutions, “if-then-else” conditionals, “for”
loops, parameterized procedures, etc.

The generation of Fig. 3 – 10 for the Erlangen mainframe is fully described
by a 350-line SVL script (200 lines if not counting comments and blank lines).
This script can either generate all figures, or only a specified subset of them
(namely, 3 , 4 , 5 – 6 , 7 – 8 , or 9 – 10). It contains three procedures:

11 https://cadp.inria.fr/man/svl-lang.html

https://cadp.inria.fr/man/svl-lang.html

– Procedure INITIALIZE sets rate parameters, queue sizes, and initial phase
to their default values.

– Procedure GENERATE takes the LNT description of the mainframe, re-
places most rate parameters by their default values but keeps a few pa-
rameters in symbolic form (i.e., β, δ2, and/or µ2) that have to iterate over
multiple values, replaces the queue sizes and initial phase by specified values,
and generates a finite, explicit-state CTMC stored in a file (encoded in the
BCG format of CADP). This CTMC contains compound action-rate labels
on its transitions — some of these rates being still symbolic. Then, in this
CTMC, every self-loop transition corresponding to a probe is either deleted
if that probe is not useful for the particular figure to be generated, or is
given the rate 1.0 otherwise (so that the throughput of the probe transition
is equal to the probability of being in the state the probe is attached to).

– Procedure INSTANTIATE takes a CTMC with partially symbolic rates,
replaces these rates by specified values, and minimises the CTMC modulo
stochastic strong bisimulation using the BCG MIN12 tool of CADP. The
resulting minimised CTMC is aperiodic, irreducible, has no deadlock state
and no τ -transitions.

In the SVL script, the various code fragments for generating each figure
are similar. First, they invoke the INITIALIZE procedure and, possibly, the
GENERATE procedure. Then, they perform one loop or two nested loops to
vary one or two rate parameters (β, δ2, or µ2) or the initial phase. The body
of the innermost loop successively invokes the GENERATE procedure (if it has
been called already before the loop), the INSTANTIATE procedure, and ei-
ther the BCG STEADY13 tool or the BCG TRANSIENT14 tool of CADP for
computing steady-state or transient probabilities.

Each invocation of the two latter tools appends to a text file a new line con-
taining the transition throughputs (i.e., sum of transition rates multiplied by
incoming state probabilities) of selected actions of the CTMC. For instance, the
point availability values A(t) and A(∞) defined in Sect. 5.2 are computed, using
BCG STEADY and BCG TRANSIENT, as the throughput of self-loop transi-
tions corresponding to the z avail probe. Similarly, the point throughput values
M(t) and M(∞) of Sect. 5.2 are computed as the throughput of get user job
transitions. Lastly, eight small Gnuplot scripts convert these throughput files to
eight figures in PNG format.

The complete execution of the SVL script takes about 10 minutes on a stan-
dard laptop (Intel x64 processor, 16 GB RAM) running Linux.

Finally, we checked, using the BCG CMP15 tool of CADP, that, for the eight
different queue sizes of Table 2, the CTMCs generated by PRISM are pairwise
equivalent, modulo stochastic strong bisimulation, to the CTMCs (without probe
transitions) generated by CADP.

12 https://cadp.inria.fr/man/bcg_min.html
13 https://cadp.inria.fr/man/bcg_steady.html
14 https://cadp.inria.fr/man/bcg_transient.html
15 https://cadp.inria.fr/man/bcg_cmp.html

https://cadp.inria.fr/man/bcg_min.html
https://cadp.inria.fr/man/bcg_steady.html
https://cadp.inria.fr/man/bcg_transient.html
https://cadp.inria.fr/man/bcg_cmp.html

6 Conclusion

The present work is an essay in research reproducibility. We revisited the Erlan-
gen mainframe case study, a challenging example proposed thirty years ago [37]
[35]. We improved this case study in two ways:

– Corrections: The original papers contained a few mistakes, which we found
and fixed. Also, the explanations given in these papers were incomplete or
ambiguous in places, but our collaborative thinking managed to recover the
missing parts and provide the most plausible interpretations. When appro-
priate, we dug into the source TIPP files to get confirmation of our decisions.

– Simplifications: Some experiments for producing the eight figures displayed
in [37] were unnecessarily complex. We addressed this issue by proposing a
few simplifications that, while producing nearly identical results as in the
original papers, are easier to understand and execute faster.

We developed two novel formal models for the Erlangen mainframe, one in the
automata-based language PRISM, and another one in the process-algebra-based
language LNT. The tools PRISM, Storm, and CADP performed all numerical
experiments and successfully reproduced the same figures as in the original pa-
pers. This suggests that these tools could be used in combination to analyse
other systems, especially critical ones, as the fact that different tools developed
independently give identical results on the same model is a convincing argument
for safety/security certification agencies.

As regards future developments, the present work could be reused and ex-
tended in several directions:

– The Erlangen mainframe is a suitable basis for lab exercises in university
courses. Our paper gives hints on how using PRISM, Storm, and CADP on
this case study in order to model the system, express its properties, and
obtain performance numbers. Many more experiments could be proposed by
varying other parameters than β, δ2, and µ2.

– The Erlangen mainframe could be specified using other languages and anal-
ysed using other tools, provided that the language requirements of Sect. 2.2
are satisfied. This example could also be used as a scalable model for soft-
ware competitions since, by varying the size of queues, one easily obtains
CTMCs of increasing complexity.

– Our modelling of the Erlangen mainframe relies on compound transitions
that combine actions and rates. It would be interesting to investigate whether
this problem can also be expressed in alternative formalisms without com-
pound transitions, such as Interactive Markov Chains [33], in which transi-
tions carry either an action or a rate.

Acknowledgements

We are grateful to the anonymous reviewers for their constructive remarks and
to Nazareno Garagiola (Saarland University) for early experiments with Storm
on the mainframe specifications.

References

1. Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System Design
15(1), 7–48 (1999). https://doi.org/10.1023/A:1008739929481

2. ANSI: Ada Programming Language. Military Standard ANSI-MIL-STD-1815A,
American National Standards Institute, New Year, USA (Jan 1983)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous Time
Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) Proceedings of the 8th Inter-
national Conference on Computer Aided Verification (CAV’96), New Brunswick,
NJ, USA. Lecture Notes in Computer Science, vol. 1102, pp. 269–276. Springer
(Jul 1996). https://doi.org/10.1007/3-540-61474-5_75

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineering
29(6), 524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180

5. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Performance Evaluation and
Model Checking Join Forces. Communications of the ACM 53(9), 76–85 (2010).
https://doi.org/10.1145/1810891.1810912

6. Barrett, G.: OCCAM 3 Reference Manual (Mar 1992), iNMOS Limited, Draft
7. Bernardo, M., Cleaveland, R., Sims, S., Stewart, W.: TwoTowers: A Tool Integrat-

ing Functional and Performance Analysis of Concurrent Systems. In: Budkowski,
S., Cavalli, A.R., Najm, E. (eds.) Proceedings of the IFIP TC6/WG6.1 Joint 11th
International Conference on Formal Description Techniques for Distributed Sys-
tems and Communication Protocols and 18th International Workshop on Protocol
Specification, Testing and Verification (FORTE/PSTV’98), Paris, France. IFIP
Conference Proceedings, vol. 135, pp. 457–467. Kluwer (Nov 1998)

8. Bohnenkamp, H., Pedro R. d’Argenio, Hermanns, H., Katoen, J.P.: MoDeST: A
Compositional Modeling Formalism for Hard and Softly Timed Systems. IEEE
Transactions on Software Engineering 32(10), 812–830 (2006). https://doi.org/
10.1109/TSE.2006.104

9. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
Dependability and Performance Analysis of Extended AADL Models. The Com-
puter Journal 54(5), 754–775 (2011). https://doi.org/10.1093/COMJNL/BXQ024

10. Bravetti, M., Bernardo, M.: Compositional Asymmetric Cooperations for Pro-
cess Algebras with Probabilities, Priorities, and Time. In: Corradini, F., Inver-
ardi, P. (eds.) Proceedings of the International Workshop on Models for Time-
Critical Systems (MTCS’00), State College, PA, USA. Electronic Notes in The-
oretical Computer Science, vol. 39, pp. 197–230. Elsevier (Aug 2000). https:

//doi.org/10.1016/S1571-0661(05)80749-2

11. Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J. (eds.) Revised Lectures on Formal Methods and Per-
formance Analysis, First EEF/Euro Summer School on Trends in Computer Sci-
ence, Berg en Dal, The Netherlands. Lecture Notes in Computer Science, vol. 2090,
pp. 183–231. Springer (Jul 2000). https://doi.org/10.1007/3-540-44667-2_5

12. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Sequen-
tial Processes. J. ACM 31(3), 560–599 (Jul 1984). https://doi.org/10.1145/828.
833

13. Buchholz, P.: Exact and Ordinary Lumpability in Finite Markov Chains. Journal of
Applied Probability 31(1), 59–75 (Mar 1994). https://doi.org/10.2307/3215235

14. Buchholz, P.: Markovian Process Algebra: Composition and Equivalence. In: Her-
zog, U., Rettelbach, M. (eds.) Proceedings of the 2nd Workshop on Process Al-

https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1093/COMJNL/BXQ024
https://doi.org/10.1093/COMJNL/BXQ024
https://doi.org/10.1016/S1571-0661(05)80749-2
https://doi.org/10.1016/S1571-0661(05)80749-2
https://doi.org/10.1016/S1571-0661(05)80749-2
https://doi.org/10.1016/S1571-0661(05)80749-2
https://doi.org/10.1007/3-540-44667-2_5
https://doi.org/10.1007/3-540-44667-2_5
https://doi.org/10.1145/828.833
https://doi.org/10.1145/828.833
https://doi.org/10.1145/828.833
https://doi.org/10.1145/828.833
https://doi.org/10.2307/3215235
https://doi.org/10.2307/3215235

gebras and Performance Modelling (PAPM’94), Regensberg/Erlangen, Germany.
pp. 11–30 (Jul 1994)

15. Buchholz, P., Kemper, P.: Quantifying the Dynamic Behavior of Process Alge-
bras. In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the Joint International
Workshop on Process Algebra and Probabilistic Methods, Performance Modeling
and Verification (PAPM-PROBMIV’01), Aachen, Germany. Lecture Notes in Com-
puter Science, vol. 2165, pp. 184–199. Springer (Sep 2001). https://doi.org/10.
1007/3-540-44804-7_12

16. Budde, C.E., Hartmanns, A., Klauck, M., Křet́ınský, J., Parker, D., Quatmann,
T., Turrini, A., Zhang, Z.: On Correctness, Precision, and Performance in Quanti-
tative Verification: QComp 2020 Competition Report. In: Proceedings of the 9th
International Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISoLA’20), Rhodes, Greece. Lecture Notes in Computer
Science, vol. 12479, pp. 216–241. Springer (Oct 2020). https://doi.org/10.1007/
978-3-030-83723-5_15

17. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS
Translator (Version 7.3) (May 2024), https://cadp.inria.fr/publications/

Champelovier-Clerc-Garavel-et-al-10.html, INRIA, Grenoble, France
18. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten Years

of Performance Evaluation for Concurrent Systems Using CADP. In: Margaria, T.,
Steffen, B. (eds.) Proceedings of the 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation ISoLA 2010 (Amiran-
des, Heraclion, Crete), Part II. Lecture Notes in Computer Science, vol. 6416, pp.
128–142. Springer (Oct 2010). https://doi.org/10.1007/978-3-642-16561-0_18

19. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards Performance Pre-
diction of Compositional Models in Industrial GALS Designs. In: Bouajjani, A.,
Maler, O. (eds.) Proceedings of the 21th International Conference on Computer
Aided Verification (CAV’09), Grenoble, France. Lecture Notes in Computer Sci-
ence, vol. 5643, pp. 204–218. Springer (Jul 2009). https://doi.org/10.1007/

978-3-642-02658-4_18

20. D’Argenio, P.R., Katoen, J.: A Theory of Stochastic Systems, Part I: Stochastic
Automata. Information and Computation 203(1), 1–38 (2005). https://doi.org/
10.1016/J.IC.2005.07.001

21. Esteve, M., Katoen, J., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal Correct-
ness, Safety, Dependability, and Performance Analysis of a Satellite. In: Glinz, M.,
Murphy, G.C., Pezzè, M. (eds.) Proceedings of the 34th International Conference
on Software Engineering, (ICSE’12), Zurich, Switzerland. pp. 1022–1031. IEEE
Computer Society (Jun 2012). https://doi.org/10.1109/ICSE.2012.6227118

22. Fischer, W., Meier-Hellstern, K.S.: The Markov-Modulated Poisson Process
(MMPP) Cookbook. Performance Evaluation 18(2), 149–171 (Sep 1993). https:
//doi.org/10.1016/0166-5316(93)90035-S

23. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation using CADP. In: Eriksson, L.H., Lindsay, P.A. (eds.) Proceed-
ings of the 11th International Symposium of Formal Methods Europe (FME’02),
Copenhagen, Denmark. Lecture Notes in Computer Science, vol. 2391, pp. 410–429.
Springer (Jul 2002). https://doi.org/10.1007/3-540-45614-7_23, full version
available as INRIA Research Report 4492

24. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st IFIP WG 6.1

https://doi.org/10.1007/3-540-44804-7_12
https://doi.org/10.1007/3-540-44804-7_12
https://doi.org/10.1007/3-540-44804-7_12
https://doi.org/10.1007/3-540-44804-7_12
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1016/J.IC.2005.07.001
https://doi.org/10.1016/J.IC.2005.07.001
https://doi.org/10.1016/J.IC.2005.07.001
https://doi.org/10.1016/J.IC.2005.07.001
https://doi.org/10.1109/ICSE.2012.6227118
https://doi.org/10.1109/ICSE.2012.6227118
https://doi.org/10.1016/0166-5316(93)90035-S
https://doi.org/10.1016/0166-5316(93)90035-S
https://doi.org/10.1016/0166-5316(93)90035-S
https://doi.org/10.1016/0166-5316(93)90035-S
https://doi.org/10.1007/3-540-45614-7_23
https://doi.org/10.1007/3-540-45614-7_23

International Conference on Formal Techniques for Networked and Distributed Sys-
tems (FORTE’01), Cheju Island, Korea. pp. 377–392. Kluwer Academic Publishers
(Aug 2001). https://doi.org/10.1007/0-306-47003-9_24, full version available
as INRIA Research Report RR-4223

25. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. Springer International Journal
on Software Tools for Technology Transfer (STTT) 15(2), 89–107 (Apr 2013).
https://doi.org/10.1007/s10009-012-0244-z

26. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd – Essays Dedicated
to Ed Brinksma on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 10500, pp. 3–26. Springer (Oct 2017). https://doi.org/10.1007/
978-3-319-68270-9_1

27. Garavel, H., Serwe, W.: The Unheralded Value of the Multiway Rendezvous: Illus-
tration with the Production Cell Benchmark. In: Hermanns, H., Höfner, P. (eds.)
Proceedings of the 2nd Workshop on Models for Formal Analysis of Real Systems
(MARS’17), Uppsala, Sweden. Electronic Proceedings in Theoretical Computer
Science, vol. 244, pp. 230–270 (Apr 2017). https://doi.org/10.4204/EPTCS.244.
10

28. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (Dec 1977). https://doi.org/
10.1021/j100540a008

29. Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.P.: A Compositional
Modelling and Analysis Framework for Stochastic Hybrid Systems. Formal
Methods in System Design 43(2), 191–232 (2013). https://doi.org/10.1007/

S10703-012-0167-Z

30. Hartmanns, A., Hermanns, H.: In the Quantitative Automata Zoo. Science of Com-
puter Programming 112, 3–23 (2015). https://doi.org/10.1016/j.scico.2015.
08.009

31. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quan-
titative Verification Benchmark Set. In: Vojnar, T., Zhang, L. (eds.) Proceed-
ings of the 25th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’19), Prague, Czech Republic. Lec-
ture Notes in Computer Science, vol. 11427, pp. 344–350. Springer (Apr 2019).
https://doi.org/10.1007/978-3-030-17462-0_20

32. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The Probabilistic
Model Checker Storm. International Journal on Software Tools for Technology
Transfer 24(4), 589–610 (2022). https://doi.org/10.1007/S10009-021-00633-Z

33. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality, Lec-
ture Notes in Computer Science, vol. 2428. Springer (2002). https://doi.org/10.
1007/3-540-45804-2

34. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional
performance modelling with the TIPPtool. Performance Evaluation 39(1-4), 5–35
(Feb 2000). https://doi.org/10.1016/S0166-5316(99)00056-5

35. Hermanns, H., Herzog, U., Merksiotakis, V.: Stochastic Process Algebras as a
Tool for Performance and Dependability Modelling. In: Iyer, R.K. (ed.) Pro-
ceedings of the International Computer Performance and Dependability Sym-
posium (IPDS’95), Erlangen, Germany. pp. 102–111. IEEE (Apr 1995). https:
//doi.org/10.1109/IPDS.1995.395813

https://doi.org/10.1007/0-306-47003-9_24
https://doi.org/10.1007/0-306-47003-9_24
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.4204/EPTCS.244.10
https://doi.org/10.4204/EPTCS.244.10
https://doi.org/10.4204/EPTCS.244.10
https://doi.org/10.4204/EPTCS.244.10
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1016/j.scico.2015.08.009
https://doi.org/10.1016/j.scico.2015.08.009
https://doi.org/10.1016/j.scico.2015.08.009
https://doi.org/10.1016/j.scico.2015.08.009
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1016/S0166-5316(99)00056-5
https://doi.org/10.1016/S0166-5316(99)00056-5
https://doi.org/10.1109/IPDS.1995.395813
https://doi.org/10.1109/IPDS.1995.395813
https://doi.org/10.1109/IPDS.1995.395813
https://doi.org/10.1109/IPDS.1995.395813

36. Hermanns, H., Joubert, C.: A Set of Performance and Dependability Analysis
Components for CADP. In: Garavel, H., Hatcliff, J. (eds.) Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’03), Warsaw, Poland. Lecture Notes in Computer Sci-
ence, vol. 2619, pp. 425–430. Springer (Apr 2003). https://doi.org/10.1007/
3-540-36577-X_30

37. Herzog, U., Merksiotakis, V.: Stochastic Process Algebras Applied to Failure Mod-
elling. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of the 2nd Workshop on
Process Algebras and Performance Modelling (PAPM’94), Regensberg/Erlangen,
Germany. pp. 107–126 (Jul 1994), https://www.researchgate.net/publication/
2731331

38. Hillston, J.: A Compositional Approach to Performance Modelling. Ph.D. thesis,
University of Edinburgh, Scotland, United Kingdom (Dec 1994), https://hdl.
handle.net/1842/15027

39. Hillston, J.: The Nature of Synchronisation. In: Herzog, U., Rettelbach, M. (eds.)
Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling
(PAPM’94), Regensberg/Erlangen, Germany. pp. 143–160 (Jul 1994), https://
www.researchgate.net/publication/2311019

40. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8), 666–
677 (Aug 1978). https://doi.org/10.1145/359576.359585

41. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, NJ (1985)

42. INMOS Limited: OCCAM 2 Reference Manual. International Series in Computer
Science, Prentice-Hall (1988)

43. ISO/IEC: LOTOS – A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. International Standard 8807, International Or-
ganization for Standardization – Information Processing Systems – Open Systems
Interconnection, Geneva (Sep 1989)

44. ISO/IEC: Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization – Information Tech-
nology, Geneva (Sep 2001)

45. Katoen, J.P.: Quantitative and Qualitative Extensions of Event Structures. Ph.D.
thesis, University of Twente, The Netherlands (Apr 1996). https://doi.org/10.
3990/1.9789036507998

46. Katoen, J.: The Probabilistic Model Checking Landscape. In: Grohe, M., Koskinen,
E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, (LICS’16), New York, NY, USA. pp. 31–45. ACM (Jul
2016). https://doi.org/10.1145/2933575.2934574

47. Katoen, J., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation Minimisation
Mostly Speeds Up Probabilistic Model Checking. In: Grumberg, O., Huth, M.
(eds.) Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’07), Braga, Portugal. Lec-
ture Notes in Computer Science, vol. 4424, pp. 87–101. Springer (Mar–Apr 2007).
https://doi.org/10.1007/978-3-540-71209-1_9

48. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, Graduate
Texts in Mathematics, vol. 40. Springer-Verlag, 2nd edn. (1976)

49. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-
bilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings
of the 23rd International Conference on Computer Aided Verification (CAV’11),
Snowbird, UT, USA. Lecture Notes in Computer Science, vol. 6806, pp. 585–591.
Springer (Jul 2011). https://doi.org/10.1007/978-3-642-22110-1_47

https://doi.org/10.1007/3-540-36577-X_30
https://doi.org/10.1007/3-540-36577-X_30
https://doi.org/10.1007/3-540-36577-X_30
https://doi.org/10.1007/3-540-36577-X_30
https://www.researchgate.net/publication/2731331
https://www.researchgate.net/publication/2731331
https://hdl.handle.net/1842/15027
https://hdl.handle.net/1842/15027
https://www.researchgate.net/publication/2311019
https://www.researchgate.net/publication/2311019
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

50. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM Benchmark Suite. In:
Proceedings of the 9th International Conference on Quantitative Evaluation of
Systems (QEST’12), London, UK. pp. 203–204. IEEE Computer Society (Sep
2012). https://doi.org/10.1109/QEST.2012.14, https://prismmodelchecker.

org/benchmarks

51. Lang, F.: Compositional Verification using SVL Scripts. In: Katoen, J.P., Stevens,
P. (eds.) Proceedings of the 8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’02), Grenoble, France. Lec-
ture Notes in Computer Science, vol. 2280, pp. 465–469. Springer (Apr 2002).
https://doi.org/10.1007/3-540-46002-0_33

52. Lindemann, C.: Employing the Randomization Technique for Solving Stochastic
Petri Net Models. In: Lehmann, A., Lehmann, F. (eds.) Proceedings of the 6th
GI/ITG Conference on Modelling, Measurement and Evaluation of Computing
Systems (MMB’91), Neubiberg, Germany. Informatik-Fachberichte, vol. 286, pp.
306–319. Springer (Sep 1991). https://doi.org/10.1007/978-3-642-76934-4_21

53. Mateescu, R., Serwe, W.: Model Checking and Performance Evaluation with CADP
Illustrated on Shared-Memory Mutual Exclusion Protocols. Science of Computer
Programming 78(7), 843–861 (Jul 2013). https://doi.org/10.1016/j.scico.

2012.01.003

54. May, D.: OCCAM. SIGPLAN Notices 18(4), 69–79 (1983). https://doi.org/10.
1145/948176.948183

55. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980). https://doi.org/10.1007/3-540-10235-3

56. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
57. Sighireanu, M., Catry, A., Champelovier, D., Garavel, H., Lang, F., Schaef-

fer, G., Serwe, W., Stoecker, J.: LOTOS NT User’s Manual (Version 3.14)
(Jun 2024), INRIA/CONVECS, Grenoble, France, https://vasy.inria.fr/ftp/
traian/manual.pdf, 88 pages

https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://prismmodelchecker.org/benchmarks
https://prismmodelchecker.org/benchmarks
https://doi.org/10.1007/3-540-46002-0_33
https://doi.org/10.1007/3-540-46002-0_33
https://doi.org/10.1007/978-3-642-76934-4_21
https://doi.org/10.1007/978-3-642-76934-4_21
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1145/948176.948183
https://doi.org/10.1145/948176.948183
https://doi.org/10.1145/948176.948183
https://doi.org/10.1145/948176.948183
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://vasy.inria.fr/ftp/traian/manual.pdf
https://vasy.inria.fr/ftp/traian/manual.pdf

	Revisiting a Pioneering Concurrent Stochastic Problem: The Erlangen Mainframe

