// nand multiplex system // gxn/dxp 20/03/03 // U (correctly) performs a random permutation of the outputs of the previous stage dtmc const int N; // number of inputs in each bundle const int K; // number of restorative stages const int M = 2*K+1; // total number of multiplexing units // parameters taken from the following paper // A system architecture solution for unreliable nanoelectric devices // J. Han & P. Jonker // IEEEE trans. on nanotechnology vol 1(4) 2002 const double perr = 0.02; // probability nand works correctly const double prob1 = 0.9; // probability initial inputs are stimulated // model whole system as a single module by resuing variables // to decrease the state space module multiplex u : [1..M]; // number of stages c : [0..N]; // counter (number of copies of the nand done) s : [0..4]; // local state // 0 - initial state // 1 - set x inputs // 2 - set y inputs // 3 - set outputs // 4 - done z : [0..N]; // number of new outputs equal to 1 zx : [0..N]; // number of old outputs equal to 1 zy : [0..N]; // need second copy for y // initially 9 since initially probability of stimulated state is 0.9 x : [0..1]; // value of first input y : [0..1]; // value of second input [] s=0 & (c<N) -> (s'=1); // do next nand if have not done N yet [] s=0 & (c=N) & (u<M) -> (s'=1) & (zx'=z) & (zy'=z) & (z'=0) & (u'=u+1) & (c'=0); // move on to next u if not finished [] s=0 & (c=N) & (u=M) -> (s'=4) & (zx'=0) & (zy'=0) & (x'=0) & (y'=0); // finished (so reset variables not needed to reduce state space) // choose x permute selection (have zx stimulated inputs) // note only need y to be random [] s=1 & u=1 -> prob1 : (x'=1) & (s'=2) + (1-prob1) : (x'=0) & (s'=2); // initially random [] s=1 & u>1 & zx>0 -> (x'=1) & (s'=2) & (zx'=zx-1); [] s=1 & u>1 & zx=0 -> (x'=0) & (s'=2); // choose x randomly from selection (have zy stimulated inputs) [] s=2 & u=1 -> prob1 : (y'=1) & (s'=3) + (1-prob1) : (y'=0) & (s'=3); // initially random [] s=2 & u>1 & zy<(N-c) & zy>0 -> zy/(N-c) : (y'=1) & (s'=3) & (zy'=zy-1) + 1-(zy/(N-c)) : (y'=0) & (s'=3); [] s=2 & u>1 & zy=(N-c) & c<N -> 1 : (y'=1) & (s'=3) & (zy'=zy-1); [] s=2 & u>1 & zy=0 -> 1 : (y'=0) & (s'=3); // use nand gate [] s=3 & z<N & c<N -> (1-perr) : (z'=z+(1-x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0) // not faulty + perr : (z'=z+(x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0); // von neumann fault // [] s=3 & z<N -> (1-perr) : (z'=z+(1-x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0) // not faulty // + perr : (z'=z+(x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0); // von neumann fault [] s=4 -> true; endmodule // rewards: final value of gate rewards [] s=0 & (c=N) & (u=M) : z/N; endrewards